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ON THE MAXIMUM TERMS, ORDERS AND TYPES OF THE 

DERIVATIVES OF AN ENTIRE FUNCTION IN SEVERAL 
COMPLEX VARIABLES. 

B. C. CHAKRABORTY AND B. K. RAY 

Abstract: Let F be the family of all entire functions in the complex n-space C". For f, g 

¬F, the Hadamard product f* g is defined. Certain inequalities involving maximum mcdulii 
of the derivatives of the Hadamard product and the Hadamard product of the derivatives of f 
and g have been obtained. A few relations involving maximum term and the corresponding 
rank of the derivatives of the above product have also been obtained. Two kinds of orders 
and types have been considered and a few results involving them have been obtained. 

1. Notations : We denote complex and real n-space by C" and R" respectively and the 
set of non-negative integers by I, so that I" denotes the Cartesian product of n-copies of I. 

We indicate the points ( Z,s ..,Z, ), (I, .., I, ), (m,, .. , m, ) etc of C" or R" by their 

Corresponding unsuffixed symbols z, r, m, etc. For z, We CH and a e C we define z = w if 
Z = W,, i = i ..., n 

a Z = 

Z   W =(Z + W]) **, Z, t W,) 

|z|={|Z | +. ..+Z, )3 

Ihe positive hyper octant R," is the set R" ={X:Xe R",Xo,i=1,.., n}. For keR, we 
set || k i| = k, + .. + k, and for me I", m!= m, ! ... m, !. 

For anypel, p will stand for the n-tuple ( p, ,p). Also for z e Cl , ke R", we shall 



2. 

write zk = 

For any x, y e R 

(2.4) 

(2.2) 

(2.3) 

On the maximum terms, orders and types of the derivatives of an entire 

function in several complex variables. 

() x <y ifl X, < Y, i =l, ..., n 

(2) x Kyiff x Ky but x y 

(3) x K<yif x, <y;, i = l, ., n 

For an entire function f with donma1n C", 

IWe say that 

(2.1) f(z) E 

and D = {r:ra | D|, no r, = 0} 

we see 

centre at O= (0, ...,0 ) in C". |D| ={r:|z = I, Ze D} 

For anyr= (I ., I, )e R" we write r = IIi 

We write for any non-empty complete n-circular domain D [ for definition vide 1 § 3.3 ] with 

ke Ir, 

rlk) 

For f, g e F we define Hadamard productf*g by 

(z) 

I evcn if z, = 0). 

nn |= 0 

(fg) (z) = 2 
|| m || 

Let F be the family of all entire functions in C" represented by a multiple power series of 
the form 

m || = 0 

S 

b,, z 

r(k) 

m || =0 

a,, b,, z", 
= 0 

i=] 

will denote the function 

k,-1 

where 

2) 

(m-i}1 z-k 



Evidently f g belongs to F. 

On he maximum terms, Orders and Types of the Derivatives of an Entirc 
Function in Scveral Complex Variables. 

Corresponding to any fe F we defime the maximum modulus M (r, f) on R, by M (r, f) = 
Throughout this section M ( r, k ) and M*(r, k ) will rcspcctivcly denote 

max f ( z )|. 
|Z|, 

the maximum modulus of the functions (f* g)) 

(2.5 ) 

Evidently M (r, O) = M* (r, O ) for any r e R: We also see that 

(2.6) 

Theorem 1. For f, g e F, as defined by ( 2.1 ) and ( 2.3 ) 

M(r. k)<k! (,) for O sr<< R and ke I", R-rj 

M* (r, k)< 

Proof. We have 

Therefore 

kË 

fK) (2) * g (K) 

k!R M (r, k ) 
R-r )k 

where O<r<R<<R and k e In 

M* (r, k) < 

fz)*2 (2)º } 

where C = C,x ... x Cp, 

k! 

and r(k 

Then, for any z such that | z, | - r, i=l. n by Cauchy's Integral Formula 
tk (f (1) * 8 () ) (k) 

k!R M (r, k ) 

(R-r) 

C; 

and central indices v, (r) of 

(k! )² R* M (R', O) 
(R-ry (R'R ) 

"g (k) 

=f (k) 

The other part immediately follows from (2 5) 

( I-z )k+i 

*g(k) 

-dt, ... dL, 

|t,-z, | -R,-, i � 1. ... n. 

on Z, |= : 

3. Now corresponding to f eF, we define the function maximum (r) 
(r)j = ,, n on R" by 

23 

(z) = 
(2 m i)" 
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(k) 
f(z) *g (z). Then 

and 

B(r) = Max { | a,, | r" } 
m e n 

"(r)= Max m, : 

(3.2) 

We cally=(r'y *** , V, ) as the rank of the maximum term u r). We shall 

throughou denote by ( r, k ) and *(r, k) the maximum terms of ((f * g) (z )) and 

n k-1 
(3.1) u( r, k) = max n i (m, 

m e Ir i=i=o 

Also let 

ranks. 

(3.3) 

B. C. Chakraborty and B. K. Roy 

u(I, k) = max 

be the central indices of 

| a,m -* L (r) i = l, ..., n} 

18 

me P i=1lj=o 

V =y(I, k) and v* = * (r, k) i=l, ... 

n k, -1 

I| m || =0 

v= v( r, k) = ( V *, Vn ) and v=y (I, k) = (V*, ...,Vn * ) be their respective 

In this section we obtain a few relations between *(r, k) and (r,k) which give us more 
information about the class of entire functions defined by (2.1). For any fe F, let D, be the 
set of discontinuities of v in | C| where v=(v", V,) is the rank of u (r), Also let S denote 
the set of all r e C at which u, (r) is attained by more than one term of the series 

n-k 

(r, k ) and *(r, k) respectively and 

[3, J. Gopal Krishna ] had shown that D, and S are identical. 
Hence for r e C | -D,, () is attained by only one term of the series (3.3) and the post tion of that term is v=( V1 ***, V, ). 

Theoram 2. For re |C!| �D,UD; and ke I" 

A 

(3. 

He 

Th 

Th 

(3 

for 

an 

Pr 



(3.4) 

On the maximum terms, Orders and Types of the Derivatives of an Entirc 
Function of Scveral Complex Variables. 

n 

ranks of u(r.k) and (r,k) 

i=1 

Proof. From (3.1) 

(3.6) 

(3.5) (r.k) 

Also from (3.2) 

where D, and D: denote the sct ol discontinuitics of v and y* in | C' L,vand * are he 

Then 

(3.7) 

u*(r,k 

i=1 | 

k -1 

i=I j=0 

i-1lj=0 

and (r,k+I) in Ca. 

r,k) 
(r,k) 

Hence the the theorem follows from (3.5) and (3.6). 

i=1j=0 

(k-1 

Theorem 3. If v (r,k) and v (r,k+I) be the ranks of p(r,k) and u(r,k+I). 

n 

Proof. From (3.1l), we have 

1) 

p(r.k+ I) 
er,k) 

k j 

-|-0 

{r,k++) = II v(r,k+I) ..., 

for re | C| -D,UD, kel, where D, and D, are the set of discontinuities of v(r.k) 

25 

I",k+I)Mc.k+ D rk+ 1) -k-I 
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Therefore, 

i. e. 

(3.8) 

Again 

(3.9) 

u(r,k+T 
(r,k) 

i=ll 

Corollaries. 
1l) 

2) 

i=l 

(3.8) together with (3.9) proves (3.7) 

i=] 

n 

B.C, 
Chakraborty and B. K. Roy 

1=1 

a,(r.k)b, (r.k) | (k)-k-+ 

(r.k) 

i=1 

ulr.2) 
(r,Ö) (r) 

n 

3) Putting k-0, ... p-! successively in (3.7) and from above we get 

Jpat.p) 
l/p 

i=1 

If we do not delete the set of discontinuities of v and y*, the above theorems take 

following forms whose proofs lollows in the same line as those of the a bove. 



On the maximum terms, Orders and Types of the Derivatives of an Entire 
Function of Several Complex Vrriables. 

Theoram 2' For any r e C|,ke I" 

of *(r,k). 

n k- 1 
In 

i-1j=o 
where p=(p: P) is a position of occurrence of (r,k) and y*(r.k) -(u*,...y,*) is thc rank 

(4.1) 

(P,-i) < *(.k) 

Pp = lim _up 

It turns out that 

Theorenm 3' If q=(4, q,) is a position of occurrence of r,k) and y=(y -*V,) is 

the rank of p(r,k+i), then, for any re | C"| 

entire function f 

4. In this section we shall consider Gul'dberg order and Gol'dberg type of an entire function 

in C, Let Dc Ca be an arbitrary bounded complete n-circular domain with centre at the 

origin of coordinates. Then for the entire function f, we define 

(r.k) 

M, n(r) = sup | f (z) | , r( >0)e R, where the point ze D, iff the point 
Ze D, 

G-type ) of f w. r. t the domain D are defined by the formulas 1, Fuks P. 3391 

log Mp. p(r) log log M pr) 
log r 

u(r,k+) 
r,k) 

D. The Gol'dberg order p and Gol'dberg type o (briefly G-order and 

the G-order 

Pp=P=lim sup 
| m | o 

PD 

n 

(v* 

does 

| m | log | m | 
-log | a, | 

27 

D 

and 

lim sup 

domain D while the G-type o does [I, P.3391. It is also known [1, P.339] thas for the 

not depend on the choice of the 
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(4.2) 

where 

(epo 

Theorem 4 

is also of G-order 

Now 

Cm (D) = sup 

Again 

Proof. Let f (z) = 

f (k) (z) = 

= lim inf 
I| m || o 

p. 

lim inf 
I| m || ’ o 

function f and f have he same G-typc o n 

= lim inf 

= lim sup 

|| m ’o 

Ze D 

Iff is an entire function with G- order p (O<p<oo), then fK) 
Moreover, for a bounded complete n-circular domain D, the 

lim sup 
m || -’ 0 

B. C. Chakraborty and B, K. Roy 

m || =0 

-log [ | m l 

- log | am I 
I| m log || m | 

-log | ml 
I| m || ’ | m|| log || m l 

| m || =0 i = 1j-o 

[|m| 1/p 

= lim sup [ || m || 

! m | 

II 

which proves the Theorem, 

1/p 

k,-1 

(| m 

II 

be of G-order ( O <p<oo ). Then, from ( 2.4 ) 

i=l lj=0 
I| m || log || m || 

m, 

log IT 
k,-1 
II 

i=! j=0 
m log m 

I m(D)) m 

by ( 4.1 ) 

n 

]a 

( m,j) 

k,-1 
|d (D) II (i 

i=l j=o 

|m || ] 

( m-j 

entire 

1 



On the nmaximum terms, Orders and Types of the Derivatives of an Entire 
Function of Several Complex Variables. 

Remark. In a similar way we can prove the following : 

For f, g e F, iff * gis of G-order p (0<p<oo) and G-type dp corresponping to a 

bounded complete n-circular domain D then f(K) 

Proof. That f*ge F is evident. 

( 4.3 ) 

Theroenm 5. Let f, ge F be of G-osders p and p respectively, then f* g e F and satisfy 

1/p > l/p + l/p where p is the G-order of f * g. 

l/p = lim inf 

Now, 

- log | a,m bm 
|| n | log il m || 

> l/pi + l/P by (4 1 ) 

glk 

(may be empty) of all points ae R such that 

Corollary. If f, ge F be of G-orders p, and pa respectively then f) * g* e F and be of 
G-order p satisfying (4.3 ) 

log M (r) < rË .t n 

29 

5. Let f be an entire function and M (r) be its maximum modulus. Let B, denote the set 

is also of G-order p and G-type o 

for || r ’o 

Be R such that log M () <B, I; tt Enn 

The boundary aB, of the set B, is called the order of f a d any point pe aB, is called an 
order point. We say that f is of finite or infinite order according as B, is non empty or empty. 

Evidently, for anyp< B,, p> 0. An order point p said to be positive if p >0. 

Next, let pe oB, (p>>0) and T, = T, (p) denote the set ( may be emyty ) of all points 

for || r ||’o 

The boundary aT, of the set T, is called the type of f corresponding to the order point p. 

A point a e aT, is called a type point off. A type point o is called positive if o >>o. 
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We say that fis of finite or infinitc type according as T, is non-empty or empty. 

Theorem 6. The entire functions f and f (ke I") have the same set of positive order Moreover for a positive order point they have the same set of positive type points. 

Proof. Let f be as in ( 2.1) and let p be an order point of f. It is known [P. .137 Ronkin 
points. 

that p(>0) is an order point of f iff 

( 5.1 ) 

Now, 

p iff 

(5.2) 

lim sup 
i| m ||o 

lim sup 

|| m 

m ’ n 

lim inf 

lim inf 
| m || 

Pi 

lim sup 

B. C. Chakraborty and B. K. Roy 

Pi 

P1 

log m, t + 

n 

-log [ I 

-log | a, | 

log m, .+ 

- log [ II 
n 

II 
i=l j=0 

/ k-1 
i=l j=0 

o log m, t. t 

-log | a,m | 
o 1 1og m, + P1 

m 

Pn 

Pn 

Pn 

log mn 

(m-)) 

Pn 

n 

mn Jog M, 

log m, 

( m-j) )| a,, 1] 

By reversing the step we get the converse part which settles the first part. 

n 

| a, |] 

It is known [P.139, Ronkin] that o>>0) is a type point of f for a positive order po 

by (5.1 ) 

m =1 

Let ol>>0) be a type point of f the positive order point p so (5.2) holds. 



Now. 

(5.2 ) 

On the maximum terms, Orders and Types of the Derivatives of an Entire 
Functjon of Several Complcx Variables, 

order points. 

point. 

11 

lim sup |a,, | II 
i=1 

lim sup| a, | I 

C¡ P 

, 

[1] Fuks, B. A. 

i=| C¡ Pi 

Hence o is a type point of f for the order point p. 
This completes t he proof. 

n 

m/e m l 

Proof. The proof is exactly similar to that of Theorem 6. 

lj=0 

Theorem 7. If f, ge F then f* g and f() * g(k) ( ke I") have the same set of positive 
Further, for a positive order point they have the same set of positive type 

(m, 
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Remark. We observe that while our order points and type points are subsets in R" the 

G-order and G-type of an entire function are simply non-negative real numbers. 

Reversing we get conversc part. 

The second author wishes to express his gratitude to the U. G. C. for awarding hinm a teacher 
fellowship under F.IP. scheme. 
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