Jour Pure Math
Vol 6 (1987—88) PP 9—13

COMPATIBLE TOPOLOGIES OF A GROUP AND THOSE
OF ITS LATTICE OF SUBGROUPS— (I1).

A. DAS GUPTA

It has been found [3] that the set of all compatible topologies of a group G and those of
its lattioe L (G) of subgroups form complete lattices T and L (T) respectiaely. Also, it
has been proved that for a topology t ¢ T, we have a topojogy t* ¢ L(T and for the
topology t* ¢ L (T) we have a topology t" ¢ T.  Also it has been shown that t* < t.
In this paper we have studied the condition under which t and t* are equal. We note that

if NU‘=e, v U’ e Z* where 2’ is the complete system of neighbourhoods of the identity
¢ of the group G for tha topology t’, then G with the topology t" is a Hausdorff

space.

2. LetteTandt bethat element of T which corresponds to t* ¢ L (T), where t* is the

corresponding element of t. [3]

Then we have the following :

Theorem—1 Lect identity be the only common element of the complete system of

neighbourhoods of identity for the topology t'.  If tis compact, then t = t’ holds.

Proof : Consider the function f: (G, t) — (G, t') defined by f (x) = x, y X ¢ G 1 e.
the identity function on G.

Now, the identity mapping f is algebrically an isomorphic mapping.  Furthermore, the

mapping f is continuous, since t’ < t.

Henee, as t is compact and as () U’ == ¢, y U’ ¢2’, where 2" is the complete system of

neighbourhoods of identity for the topology t’, it follows thatf is a homeomorphism.
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or, a == N — nye Uy, Contradiction as N — n is not divisible by p* and so, a ¢ U.

3. We define a generalised topological group.
Definition :
A set G of elements is called a generalised topological group if
(1) G is an abstract group
(2) G is a topological space.
(3) The group operations in G are continuous in the topological space G.

Let G be a group and t be not the weakest compatible topology of G, so that G with

the topology t is a generalised topological group.

Let t be a compact topology.

Then we can show that there exists a topology ?, for which the complete system of
neighbourhoods of identity is ¥ = {N, G}, where N is a normal subgroup and t<t.
For, fromt we get t’ | t'<< t [3].

Let H be any neighbourhood of identity belonging to t'.

Let N = n xHx%. Here, N # G.
xeG

Since t is compact, there exists a neighbourhood V of t | xVx~' cH for all x ¢G.
Hence, N C x? Hx, y x e G. So, VC N.

Hence, N is an open normal subgroup of G.

We consider the set 2 = (N, G}.
Then it can be shown that Z satisfies all the five conditions :—
(1) Identity beloﬁgs to all the sets.
(2) The intersection of any two sets of the system S contains a third set of the
system 5

(3) For every set U of the system E, there exists a set V of the same system, such
that VV-' C U.

(4) For every set U of the system 2 and an element a ¢ {J, there exists a set V of the

system E, such that VaC U.
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Now. if G is a simple group, then the compact topology tis an atom in the lattice ,

For, let t, be any compatible topology such that t; < t.

Let X be the complete system of neighbourhoods of identity of the topology t,.
Then 0 Yy —e. v U €2y, since G is simple,

Hence G, with the topology t, is a Hausdorff space.

Also, tis compact - Hence by theorem 1, t; = t holds.

Therefore, t must be an atom.
Hence, we have t_: t" =t holds, if G is simple.

Also, t is a discrete topology as N=(e), the identity subgroup.

Hence, G with the topology t, is a compact discrete space. So, G is a finite 8roup and T py |

be a two element lattice, as t is discrete and is an atom. ?

Therefore, we have the following theorem -

Theorem—2 :

4 compact topology, then T is a two element lattice ant|
G is finite,
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