

π -GROUP CONGRUENCE ON AN EVENTUALLY REGULAR SEMIGROUP

YUFEN ZHANG AND DESHENG WANG

1. INTRODUCTION

A semigroup is eventually regular if for every $a \in S$ there exists a positive integer m such $a^m \in a^m Sa^m$. We shall denote by $\text{Reg}S$ the set of all regular elements of S and by $E(S)$ the set of all idempotents of S . If $x \in \text{Reg}S$, $V(x)$ will denote the set of inverses of x .

An eventually regular semigroup S is called a π -group if $|E(S)| = 1$. It is easy to see that a π -group is nil-extension of a group. A nonempty subset A of a semigroup S is said to be N -subset if for any $x, y \in S^1$, $xAy \subset A$ whenever $xAy \cap A \neq \emptyset$. If a N -subset A of S is a subsemigroup of S , we will say that A is a N -subsemigroup of S . If $E(S) \subset A$, we say A is full.

Congruences on an eventually regular semigroup are discussed in [4], [5], [6] using the similar method which is used in regular semigroup. In this paper we first give some properties of the N -subset of S and then we describe the π -group congruence on an eventually regular semigroup. At the end we will prove that the π -group congruence is just the group congruence when S is regular and this will give a new description of the group congruence on a regular semigroup.

2. PROPERTIES OF N -SUBSETS

Theorem 2.1. Let S be a semigroup.

- (1) If ρ is a congruence on S , then every ρ -class of S is a N -subset of S .
- (2) Let A be a N -subset of S , define a binary relation on S by

$$Q_A = \{(x, y) \in S \times S : x = y \text{ or } x, y \in A\}$$

Let ρ_A denote the congruence generated by Q_A , then A is a congruence class of ρ_A and ρ_A is the smallest congruence on S which makes A as its congruence class.

*This work is supported in part by NST of Shandong Province and NNSF of China.

(3) If $\{A_i : i \in I\}$ is a family of N -subsets of S and $A = \bigcap_{i \in I} A_i$ is nonempty, then A is a N -subset of S .

(4) Let S_1 be a semigroup and $\phi : S \rightarrow S_1$ be an epimorphism from S to S_1 . Then the inverse image $A_1\phi^{-1}$ of a N -subset A_1 of S_1 is a N -subset of S .

(5) Let A be a N -subset of S . Then A is a N -subsemigroup of S iff there exist x and y in A such that $xy \in A$.

(6) If the intersection of a subsemigroup T and a N -subset A of S is nonempty, then $A \cap T$ is a N -subset of T .

Proof. (1) For every $a \in S$, ap denotes the ρ -class containing a . Let $x, y \in S^1$ such that $x(ap)y \cap (ap) \neq \emptyset$, then apb for some $b \in ap$ and $(xby)\rho a$. Thus for every $c \in ap = bp$, $(xyc)\rho (xby)\rho a$ and $x(ap)y \subset ap$.

(2) First it is easy to see $ap_A b$ for $a, b \in A$. Suppose now $x \in S$ and $x\rho a$ for some $a \in A$. Then $x = a$ or there exist $z_1, z_2, \dots, z_{n-1} \in S$ such that $(z_i, z_{i+1}) \in Q_A^C$ for $i = 0, 1, 2, \dots, n-1$, where $z_0 = a$, $z_n = x$ and $z_i \neq z_{i+1}$ for $i = 0, 1, \dots, n-1$. If $x = a$ then $x \in A$.

Otherwise, if $x \neq a$, since $(a = z_i) \in Q_A^C$, there exist $x_i, y_i \in S_1$ such that $a = x_i b_i y_i$, $z_i = x_i c_i y_i$, where $(b_i, c_i) \in Q_A$ for some $b_i, c_i \in S$. Thus $b_i, c_i \in A$ since $a \neq z_i$ implies $b_i \neq c_i$. Then

$$a = x_i b_i y_i \in x_i A y_i \cap A \neq \emptyset \text{ and thus } x_i A y_i \subset A$$

So that $z_i = z_i c_i y_i \in A$.

Using the same deduction we obtain that $z_2, z_3, \dots, z_{n-1} \in A$, so that $x \in A$ and then A is a congruence class of ρ_A .

Now suppose that ρ is a congruence on S such that A is a congruence class of ρ . Suppose $x, y \in S$ and $(x, y) \in Q_A$, then $x = y$ or $x, y \in A$. So that $(x, y) \in \rho$, thus $Q_A \subset \rho$ and then $\rho_A \subset \rho$.

(3) Follows from the definition of N -subset easily.

(4) Since ϕ is an epimorphism, the binary relation defined by $\rho = \{(x, y) : (x\phi, y\phi) \in \rho_{A_1}\}$ is a congruence on S . Let $a, b \in A_1\phi^{-1}$, then $(a\phi, b\phi) \in \rho_{A_1}$, and thus $(a, b) \in \rho$. On the other hand, if $a \in A_1\phi^{-1}$, $x \in S$ and $x\rho a$, then $(x\phi, y\phi) \in \rho_{A_1}$, that is $x\phi \in (a\phi)\rho_{A_1} = A_1$, thus $x \in A_1\phi^{-1}$. So that $A_1\phi^{-1}$ is a congruence class of ρ and then $A_1\phi^{-1}$ is a N -subset of S by (1).

(5) Suppose $x, y \in A$ such that $x, y \in A \cap A = \emptyset$. So that $x A \subset A$ since A is a N -subset of S . Now for every $b \in A$, $xb \in A$ which implies $Ab \cap A \neq \emptyset$ and then $Ab \subset A$. This A is a subsemigroup of S .

(6) Suppose $x, y \in T^1$ such that $[x(A \cap T)y] \cap (A \cap T) = \emptyset$ and thus $x(A \cap T)y \subset xA y \subset A$, so that $x(A \cap T)y \subset A \cap T$ since obviously $x(A \cap T)y \subset T$.

Corollary 2.2. If a N -subset A of a semigroup S contains idempotents, then it is a N -subsemigroup. Conversely, every N -subsemigroup of an eventually regular semigroup contains idempotents.

Proof. Let $e = e^2 \in A$, then by (5) of Theorem 2.1, A is a N -subsemigroup of S . Conversely, If A is a N -subsemigroup of S , and $a \in A$, then $a^2 \in A$. By (2) of Theorem 2.1, $A = a\rho_A \in E(S/\rho_A)$. So that there exists an idempotent $e \in E(S)$ such that $e\rho_A = a\rho_A = A$ since S is eventually regular.

3. π -GROUP CONGRUENCE ON AN EVENTUALLY REGULAR SEMIGROUP

Definition 3.1. Let S be a semigroup and $a, b \in S$, we say b devides $a(b/a)$, if $a = xby$ for some $x, y \in S^1$.

In this section S will be always an eventually regular semigroup unless otherwise stated.

Lemma 3.1. Let m be the positive integer such that $a^m \in \text{Reg } S$. and If $(a^m) \in V(a^m)$, then $a^i(a^m)a^j \in E(S)$, $i + j = m$.

Lemma 3.2. Let A be a full N -subsemigroup of S and $a \in S$. If there exists an element $u \in A$ such that u/a then $(a\vartheta)\rho_A = a\rho_A = (\vartheta a)\rho_A$ for every $\vartheta \in A$.

Proof. Since A is a full N -subsemigroup of S , then it is the idempotent of S/ρ_A by Theorem 2.1 (2).

From u/a , we have $a = xuy$ for some, $x, y \in S^1$. Let $n \in N$ such that $y^n \in \text{Reg } S$ and $(y^n) \in V(y^n)$.

$$\begin{aligned} (a\vartheta)\rho_A &= (xuy\vartheta)\rho_A \\ &= [xuy(y^n)y^m\vartheta]\rho_A && (\text{since } (y^n)y^m \in E(S) \subset A) \\ &= [xuy(y^n)y^m]\rho_A && (\text{since } \vartheta \in A) \\ &= [xu(y(y^n)y^{n-1})y]\rho_A \\ &= (xuy)\rho_A && (\text{since } y(y^n)y^{n-1} \in E(S) \subset A) \\ &= a\rho_A \end{aligned}$$

Similarly, $a\rho_A = (\vartheta a)\rho_A$.

Lemma 3.3. Let S be a semigroup and A be a N -subsemigroup of S . Then for any $a, b \in S$, if $a\rho_A b$ and $a \neq b$, then there exist $u, \vartheta \in A$ such that u/a and u/b .

Proof. By the definition of ρ_A , there exist $z_1, z_2, \dots, z_{n-1} \in S$ such that $(z_i, z_{i+1}) \in Q_A^C$, and $z_i \neq z_{i+1}$ for $i = 0, 1, \dots, n-1$. where $z_0 = a, z_n = b$.

Since $(a, z_i) \in Q_A^C$, there exist $x, y \in S_1$, $(u, w) \in Q_A$ such that $a = xuy$, $z_i = xwy$. Thus $u \neq w$ since $a \neq z_i$ and then $u, w \in A$ and u/a .

Using the same method we can prove that there exists $\vartheta \in A$ such that ϑ/b .

Theorem 3.4. Let A be a full N -subsemigroup of S . Then

(1) ρ_A is a π -group congruence on S .

(2) For any $a, b \in S$ $a\rho_A b$ iff $a = b$ or there exist $u, \vartheta, w \in A$ and $e \in E(S)$ such that u/a , ϑ/b and $be = wa$.

Proof. (1) Since A is a ρ_A -class by Theorem 2.1 and S/ρ_A is obviously eventually regular. Then ρ_A is a π -group congruence of S since $E(S) \subset A$.

(2) If $ap_A b$ and $a \neq b$, by Lemma 3.3, there exist $u, v \in A$ such that $u|a, v|b$. Now let m be the positive integer such that $a^m \in \text{Reg } S$ and $(a^m)' \in V(a^m)$, then

$$[a^m (a^m)] \rho_A [b a^{m-1} (a^m)'] \text{ and thus } b a^{m-1} (a^m)' \in A$$

Since $a^m (a^m)' \subset E(S) \subset A$ and A is a ρ_A -class. Let $e = a^{m-1} (a^m)' a \in E(S)$, $w = b a^{m-1} (a^m)'$, then $wa = be$.

Conversely, suppose $a = b$ the $ap_A b$. Otherwise, there exist $u, v, w \in A$ and $e \in E(S)$, such that $u|a, v|b, wa = be$. By Lemma 3.2, $ap_A = (wa) \rho_A = (be) \rho_A = b \rho_A$.

Theorem 3.5. (1) Let ρ be a π -group congruence on S , then the kernel of ρ is a full N -subsemigroup of S and $\rho_{\text{ker } \rho} \subset \rho$.

(2) If A is the intersection of all the full N -subsemigroups of S , then ρ_A is the smallest π -group congruence on S .

(3) For every $a \in S$, $ap_A \in \text{Reg}(S/\rho_A)$ if and only if there exists $u \in A$ such that $u|a$.

(4) For every $a \in S$, if ap_A contains more than one element, then $ap_A \in \text{Reg}(S/\rho_A)$.

(5) Let A be a full, and closed N -subsemigroup of S . If there exists $a \in S$ such that for every $u \in A$, $u|a$. Then there exists a π -group congruence on S such that $\rho_A \subset \rho$ and $\rho_A \neq \rho$.

Proof. (1) Since $\text{ker } \rho = \{a \in S : ape \text{ for some } e \in E(S)\} = f\rho$ for every $f \in E(S)$. By Theorem 2.1 and Corollary 2.2, $\text{ker } \rho$ is a full N -subsemigroup and $\rho_{\text{ker } \rho} \subset \rho$.

(2) It is the smallest π -group congruence, since A is the smallest full N -subsemigroup.

(3) Let $ap_A \in \text{Reg}(S/\rho_A)$. If $a \in \text{Reg } S$, then $e = a'a \in E(S) \subset A$, where $a' \in V(a)$. It follows that $a = ae$ and then $e|a$.

If $a \notin \text{Reg } S$, let $n \in N$ be such that $a^n \in \text{Reg } S$ and $(a^n)' \in V(a^n)$, then

$$a^n (a^n)' a \in \text{Reg } S \text{ and } a^{n-1} (a^n)' \in V(a^n (a^n)' a)$$

Thus $a \neq a^n (a^n)' a$. Now since $\text{Reg}(S/\rho_A)$ is a subgroup of S/ρ_A with identity $(a^n (a^n)' a) \rho_A$ then $ap_A = (a^n (a^n)' a) \rho_A$. By Lemma 3.3, There exists $u \in A$, such that $u|a$.

Conversely, Suppose there exists $u \in A$ such that $u|a$, and $a = xuy$ for some $x, y \in S^1$. Let m, n be the positive integers such that y^m and a^n are regular, respectively. Suppose $(a^n)' \in V(a^n)$, and $(y^m)' \in V(y^m)$. It is easy to see $a^n (a^n)' a \in \text{Reg } S$. Thus

$$\begin{aligned} ap_A &= (xuy) \rho_A = (xuy^m (y^m)' y) \rho_A \quad (\text{since } y^m (y^m)' \in E(S) \subset A) \\ &= (xuyy^{m-1} (y^m)' y) \rho_A \\ &= [xuy (y^{m-1} (y^m)' y) (a^{n-1} (a^n)' a)] \rho_A \\ &= (xuya^{n-1} (a^n)' a) \rho_A \\ &= (a^n (a^n)' a) \rho_A \in \text{Reg}(S/\rho_A) \end{aligned}$$

(4) Suppose $a \neq b$ and $a\rho_A b$, for $a, b \in S$. By lemma 3.3, there exist $u, v \in A$ such that $u|a, v|b$ and then $a\rho_A \in \text{Reg}(S/\rho_A)$ by (3). Equivalently, we know that if $a\rho_A$ is not a regular element in S/ρ_A , then $a\rho_A$ contains only one element.

(5) Recall that a subset A of an eventually regular semigroup is self-conjugate, if

$$aAa^{n-1}(a^n)' \subset A, \text{ and } a^{n-1}(a^n)'Aa \subset A$$

where n is the positive integer such that $a^n \in \text{Reg}S$, and $(a^n)' \in V(a^n)$.

Now, since $a^n(a^n)', a(a^n)a^{n-1} \in E(S) \subset A$. It follows that

$$a[(a^n)'a^n]a^{n-1}(a^n)' = a[(a^n)'a^{n-1}](a^n)(a^n)' \in A$$

and then $aAa^{n-1}(a^n)' \cap A \neq \emptyset$. so that $aAa^{n-1}(a^n)' \subset A$.

Similiarly, we have $a^{n-1}(a^n)'Aa \subset A$. Again since A is closed we obtain that

$$\rho = \{(x, y) \in S \times S : xu = vy \text{ for some } u, v \in A\}$$

is a group congruence on S by [5], and $\text{ker}\rho = A$. Thus $\rho A \subset \rho$. Since there exists $a \in S$, $u \mid a$ for every $u \in A$, and this implies $a\rho A \notin \text{Reg}(S/\rho_A)$. Therefore $\rho_A \neq \rho$.

4. GROUP CONGRUENCE ON REGULAR SEMIGROUP

In this section, S will denote a regular semigroup. Let A be a full, self-conjugate and closed subsemigroup of S . In [3], D. R. Latorre showed that the relation defined by

$$\sigma_A = \{(a, b) \in S \times S : au = vb \text{ for some } u, v \in A\}$$

is a group congruence on S . Now, we will describe the group congruence on S by the full N -subsemigroup of S . First it is easy to show the following theorem.

Theorem 4.1. Let A be a full N -subsemigroup of S . Then ρ_A is a group congruence on S .

Theorem 4.2. Let A be a full N -subsemigroup of S . Then for any $a, b \in S$, the following conditions are equivalent.

(1) $a\rho_A b$;

(2) there exists $b, \in V(b)$ such that $b, a \in A$;

(3) there exists $e \in E(S)$ and $u \in A$ such that $ea = bu$

Proof. (1) implies (2). If $a\rho_A b$; then $(b, a) \rho_A (b, b)$ for all $b, \in V(b)$ Then $b, a \in A$ since $b, b \in E(S) \subset A$ and A is a ρ_A -class.

(2) implies (3). Let $u = b, a$, $e = bb, \in V(b)$. Then $bu = bb, a = ea$.

(3) implies (1). It is easy to see $a\rho_A = (ea)\rho_A = (bu)\rho_A = b\rho_A$ since ρ_A is a group congruence and $u \in A$.

Theorem 4.3. Let A be a full subsemigroup of S . Then the following conditions are equivalent.

(1) A is a N -subsemigroup.

(2) A is unitary and self-conjugate

(3) A is closed and self-conjugate

(4) A is unitary and symmetric.

Proof. (1) implies (2). Let $a \in A$, $x \in S$ and $ax \in A$. Then $Ax \cap A \neq \emptyset$ and then $Ax \subset A$. Let $x_1 \in V(x)$, then $xx_1 \in E(S) \subset A$. So that $x = xx_1x \in Ax \subset A$. We also have $xa \in A$ implies $x \in A$. Thus A is unitary.

Let $x \in S$ and $x_1 \in V(x)$. Then $x_1(xx_1)x = x_1x \in E(S) \subset A$ and thus $Ax \cap A \neq \emptyset$. So $x_1Ax \subset A$ which implies that A is self-conjugate.

(2) implies (3). It is obvious that $A \subset Aw$. Let $x \in Aw$. Then there exists $u \in A$ such that $ux \in A$ and then $x \in A$ since A is unitary. So $A = Aw$.

(3) implies (4). Let $x, y \in S$ be such that $xy \in A$. Suppose $x_1 \in V(x)$, then $x_1xyx \in x_1Ax \subset A$, and then $yx \in A$ since $xx_1 \in E(S) \subset A$ and A is closed. Thus A is symmetric.

Let $a \in A$, $x \in S$ and $ax \in A$, then $x \in A$ since A is closed. If $xa \in A$ then $ax \in A$ since A is symmetric. Thus $x \in A$, which implies that A is unitary.

(4) implies (1). $x, y \in S^1$ and $xAy \cap A \neq \emptyset$. Then there exists $a \in A$ such that $xay \in A$, and then $ayx \in A$ by the symmetry of A . So $yx \in A$, since A is unitary. For every $b \in A$, by $x \in A$ and then $xby \in A$. So $xAy \subset A$.

REFERENCES

1. J. Howie, An introduction to semigroup theory, Academic Press, 1976.
2. S. Bogdanovic, Semigroups with a system of subsemigroups, *Novisad* ; 1985.
3. D. R. Latorre, Group congruence on regular semigroup, *Semigroup Forum*, 24 (1982) 327-340.
4. P. Protic and S. Bogdanovic, Some congruences on a strongly π -inverse r -semigroup, *Zbor Rad, PMF, Novisad*, 2 (1985), 79-89.
5. S. Hanumantharao and P. Lokshmi, Group congruences on eventually regular semigroup, *J. Austral. Math. Soc (series A)*, 45 (1988) 320-325.
6. S. Hanumantha Rao and P. Lokshmi, The least semilattice of group congruence on an eventually regular semigroup, *semigroup Forum Vol. 42* (1991) 107-111.

**Institute of Mathematics
Shandong Normal University
Ji-Nan, Shandong 250 014
People's Republic of China**