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INTEGRATION OF A MORE GENERAL CLASS
- OF FUNCTION ON A TOPOLOGICAL SPACE

S. SiNHA Roy *

ABSTRACT : Applying the concepts of regular 6-Baire measure [2] and regular e-'B'orel 'ineasure
[3], we here introduce the concept of integration of 6-Baire functions [2] and @-Borel functions [3]

with H-set support and finally we give an analogue but a generalized version of the famous Riesz-
Markoff represantation theorem.
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1. INTRODUCTION

The theory of integration can be developed on two types of topological spaces, viz.,
locally compact T,-space and complete metric space. We know that every continuous function
with compact support is integrable on a locally compact T,-space with respect to a.regular
Baire measure or regular Boarel measure. In [5] a class of topological spaces is innovated
viz.,t locally 6-H closed, 6-CR, 6-T, space which is more general than a locally compact T,-
Space in a non-regular space ; also in [3], it is shown that on a locally 6-H-closed, 6-CR,
6-T, space, there always exists a regular 6-Borel measure. Using all these concepts, we- here
introduce the concept of integration of a continuous function with H-set support with respect
0 a regular 6-Baire measure or 6-Borel measure on a locally 6-H-closed, 6-CR, 6-T, space
as is done by first integrating characteristic functions and subsequently, simple functions, non-

Negative *-measurable functions, then *-measurable functions in general (*—denoting eithér
Baire or Borel).

Theorem 4.13, [3], which ascertain the possibility of extending a 6-Baire measure v
On a locally 6-H-closed, 6-CR, 6-T, space X to a unique regular 6-Borel measure (L might

\
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which requires a solution at the very gy
e

atom of ambiguity .
d this shall be done In Theorem 1.1 of next article.

ole paper We would be primarily interested in the relagic. .
and the integral which it assigns to continuoyg fulonship
s

however arouse an y
. o N

sake of consistency an
.. However throughout the wh
between a regular @-Borel measure

with H-set support.. i 7y |
Unless otherwise stated 'Y shall denote a locally 6-H-closed, 6-CR, 6-T, space
shall denote the class of all continuous functions on X with H-set support,

and 4

PREREQUISITES

d U be a 6-open set in X with A < U ensure the ey;
s

—1onAand 0 <f<1[2 fence

0.1. Let A be an H-set ar
of some f € H such that f =0 on X\U, f
0.2. The class of all 6-Baire functions is the smallest class of feal-valued conti
s closed under sequential pointwise limit [2]nuous

functions on X which contains % and 1
0.3. If f is integrable, g is measureable and f = g a.e. -then g 1s also integrable

O R able ang
[ fdu= [ gdpt4. |

0.4. If f is measurable, g is integrable and |f|<|g| ae., then f is integfable [4]

1. IN_TEGRATION OF CONTINUOUS FUNCTIONS WITH H-SET SUPPORT
i I R D Lol i g
e s i el e s U-integrable:if and only if it .is v-integrable, and in this
case _[fdu=_[fdv.._', ARt il oo opitamte? L " |
_usuai ;_’:;«::‘;EA: ;sual, there shéll be no loss of geﬁqr_ality if we céns’ider f =05 with the
can select.a sequence of simple @-Baire functions such that 0<f, T/

ra(1) e
# Ol(t!)leno:v(i:;):;tsles; IZ%S“’;B“B‘“’, functions too. If N(f) denotes the sct {x € X [t
| ND) = vIN()) and it is clear that f, is p-integrable if and only if

it is v-integrable, a d that i : \
grable, and that in this case we have _[ﬁ:dﬂ=_[f dv: in view of (1), it is now
n B4 '

assured, by simple measu :
. ’ re-theoretic ar
integrable and that in thi guments that f is p-in : if itis Vv
at in this case the values of the two ir':tegrt"lalgrable i m;d ot
als are equal.

Example 1.2, Let X b
. s e the real |j d i
T, is the topology of co ine and if 7 is the Eucli on X nd
untable complements on X, we define ru:(])u:)eear:hct:ogfriglglzst topol®)
ubse!

generated by 7, U 7, Let [a,b] be any closed sub

of (X7, alsc: .ot s e set of (X, 7). Then [a,b] is a comp®®
va

set but not
't compact subset of (X,7). Hence any ¢
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- continuous function Wlth.S“pPO“ [a,b] in (X,7)) is a continuous function with H-set support
 [a,b] in (X,7) but not with compact support, :

Note 1.3. The class % of real valued continuous functions on X with H-set support
is wider than the class of real valued continuoys functions on X w

e ol ith with compact set support
i is non-regular. / '

Theorem 1.4. If f be a real valued continuoys function with H-set support on X, then
f is v-integrable, where v is the 0-Baire measyre.

Proof. Let C be the H-set such that f = 0 on X\ C. First we prove that f is bounded
on C. Infact, {C) is an H-set in IR, Since IR is regular f(C) is compact set in IR. Thus f(C)
is a bounded set in IR and so fis a bounded function. Let o be an upper bound of f on

- C, then clearly |f(x)|<oy, ; also oy, is iﬁtegrable and f is a 6-Baire function [2] hence
J is v-measurable [2], so f is v-integrable on X (by 0.4). This completes the . theorem.

Note 1.5. It follows from Theorem 1.4 that if K is a 6-Borel measure, and v is the
6-Baire restriction of 1, then every continuous function with H-set su

pport is v-integrable
and hence p-integrable by Theorem 1.1. R N |

With #—denoting the class of continuous functions with H-set support we can now
assure ‘a property common to 6-Baire measure and regular 6-Borel measure. Infact, if any

two 6-Baire measure assign the same integral to each f in H, then they are identical ; the
~same- is true for two 6-Borel measures as well. v~ 8 ) RS

 Theorem 1.6. If 'v, and VZ are 6-Baire measure on X such that I fav, =j
fin H then'v,: v

z

fd;z2 for bev'f.zr_v

Proof. Let D.be any arbitrary H-G; set, then y, is a simple 6-Baire function. and

there exists a seqhence of functions {f} in # such that £, 4 xp [2], this implies that

j f,dv L v(D), for every 6-Baire measure v. Hence I f,dv L v(D) and Jf,,dvg L v,(D). But,

according to assumption .f f,dv, ='|. fudv,, for every n. So v(D)=v,(D) for every H-G;

set ie., v, = v, [2].

Theorem 1.7, If , and [L, are regular 0-Borel measures on X such that I fdu, = J fau,
Jor every f in 3 then p, = U, | | : ,

Proof. Let v, be the 6-Baire restriction of i, i =1,2; by Theorems 1.1 and 1.4 we
have I fdv, =J fdv, for every f in #; hence v, = v, by Theorem 1.6. So it fblldws th_z}t
H(E) = I(E) for every 6-Borel set E[3]. Hence u, = [, | 5
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| Lemma 1.8. If f s ay in

grable simple Q-Baire functions St

tegrable 6-Baire function, then there exists 4
, ’ Se u
€ne

e

of inte ch that f, = [ pointwise and J( F=£)dv -0 f
v denotes the given 6- ' ' Whe
Proof. If suffices to consider th

able simple func

Baire measure.
e casc when f 2 0. By definition of integrap;:
11t

¥i there

exists a sequence f, of integr tions such that 0= f, T f, and J fdy
N

to be sup J‘j;,dv‘. Thus fﬁ, dvaﬁlv; since f — f, 2 0 we have J'(f ;
i - n)dl’

= ffdv—fﬁ, dv—0

Theorem 1.9. Let v be 0-Baire measure on X and suppose [ is a v-integrap]
, able B'Bair
¢

m

function. Then for every € > 0, there exists a functioh g, given by g = Z
ot ' = ikn» Wher,

J J - E.

j y 0[

h f .

Now, v being g iS inn

m

that A, c B.and = —_— | = E

l ; V(Bj AJ) < ‘Now. i 6

. , we define a function

g jZA )

mK J
j:‘:l

m

~Then  f-g= ‘ )
8 ;ﬁj(ZB,“ZA/)=§ﬁjZB,-AJ

S m n
o Jir-ssYlabs-a)< S
This Com 3 R mK b
pletes the theorem,

Integrable function by a function in
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m

Proof. In view of Theorem 1.9, we can assume f = 2[3 iX4,» Where Bs are real numbers
4 J
: j=1

and A's are mutually disjoint H-Gj sets. Now corresponding to each X4, (Where A is an

H-G{ set) there exists a sequence (f,/) of functions from 4f converging pointwise to %,
[2]. Since linear combination of finite number of functions in 7/ is again in #, so finite linear

combination of f’s for j =1, 2, ..., m is a sequence of functions say {f } in # converging

pointwise to f- Hence {j f,,dv} converges pointwise to j fdv. So, for each € > 0, there exists

a continuous function with H-set support from {f} say, f, = g such that ﬂ f—g|dv<e. This
completes the proof.

2. APPROXIMATION OF p-INTEGRABLE FUNCTION BY A FUNCTION IN %

We had studied extensively 6-Borel and 6-Baire functions along with 6-Borel and €
Baire measures in [2] and [3]. The set of 6-Borel functions obviously contains the set of
@-Baire functions which is why it becomes quite pertinent to ask whether 6-Borel functions
can be approximated by 6-Baire functions. The answer is not only in the affirmative as can
be seen from the subsequent discussion, but also, even more, every [i-integrable function where
u is a regular 6-Borel measure, can be approximated by a function in 7L

Proposition 2.1. Let i be a regular 6-Borel measure and E is any 6-Borel set, then
there exists a O-Baire set F such that yp=xp ae. [/].

Proof. It is sufficient to prove that for each 6-Borel set E, there exists a 6-Baire set
F such that w(E A F) = 0. |

‘Case I : Let UWE) < +eo. By regularity, there exists a sequence of H-sets {C } such

that C < E and u(C) T W(B). Let G = LJC,I then clearly G ¢ E and u(G) = w(E) 1e,

n=1

IME\G) = 0. Using regularity of g, for each n; we may choose an H- Gy set D such that

C,c D and y(D - C) = 0 [3]; if we take F = UD,,, then F is a 6-Baire set such that
n=1

Gc Fand W(F - G) =0; so W(EAF) =

Case II. WE) = o; then E C UC,. where C's are H-sets; since U(C) < +oo for
i=1
each i, u is o-finite : thus there exists a sequence of G-Borel sets {£} of finite measures
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such that E = UE,.. Then by case I; for each n; there exists a 6-Baire set F n‘S“C_h that

i=1

WE A'F) = 0; then if we take F = |JF, clearly W(E A F) = 0, since E A F c{JE.AF,;

) . n=1 n=1
ob\'}‘ious_ly, F 'ijs a O-Baire set. |

i Tiieorem_ 2.2. If f is any 0-Borel function'and U is a regular 0-Borel measure on X,
then there_ exists a 6-Baire function h such that f = h a.e.

" Proof. Here f is any 6-Borel function, so. there exist; a sequence {fn } of simple
6-Borel functions converging pointwise to f. Hence by Proposition 2.1, there exists a sequence
of simple 6-Baire functions {g )} such that'g, = f, ae. (1]

So g — fae. [u]. Let E be the set such that p(E) = 0 and g, — f pointwise on
X\E.

Let us construct the set F, , by

R TR Y 1
‘:-'5"”.”‘fvrmn:.»~= ' U{X5|gi(x)—gj(x)|.>_-’—11—};

~ o G jzn

“+ then -clearly F_is-a 6-Baire set for each m, n [2]. Consequently,

s a O-Baire set. Now, since g, is convergent on X\E, so F c E and $0 WF) = 0.

If we define h, = xy\,g, ; then h_is a 6-Baire function [2] and h =g ae. [y and

}wncz h —E]; a.e. [U]. Then h, the pointwise limit of {h } is a 6-Baire function such that
= h ae. [pH].

o Finally, we prove that, cach p-integrable 6-Borel function can be approximated by
unctions in H, i.e., corresponding to each p-integrable 6-Borel function f, there exists 2

se'('iuer‘lé‘é of fi [" i ; . : : .
Iy {f,} unctions in % converging pointwise to fand in this case j fdu= limj fdu.

:‘T.h i ] T
| eorem 2.3. Let §1 be a regular 0-Bore] measure X and suppose f is a |L-integr able
0-Borel ]
| orel function, then for every € > 0, there exists a Junction h € 3 such that Jlf 'h| dust

1__’_roof. By The'orem 2.2, there exists a 6-B
g 18 [-integrable (by 0.4). Let v be the 6-

aire function g such that g = fae. [ i
Th?‘?,rﬁm 1.1], then for any € > 0, there

Ba}ire restriction of M, then g is v-integrable [by
CXists a function & € % such that
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d lg—hldv<e [by 1.10]

= |lg-hduse by 1.1

= |f —hldu<e  (since |f —h|<|g—h| ae. [u)

This completes the theorem.

3. GENERALIZED REPRESENTATION THEOREM

Notation 3.1. If f is any real valued function on X and E — X, then we write f2
Eif Aix) 21 forall x € E and ix) 20 if x € X\E.

Theorem 3.2. If F is a positive linear form on H, then there exists a unique regular

@-Borel measure W such that F(f) = de/,t, for all f € H
Proof. We define a set function | |

A(H) =inf{F() : f> H and f € H) for every H-set H.
Since F is positive, A(H) > 0 for every H-set H. Let H be any H-set and V be any

6-bounded 6-open set containing H. Then there exists a function f € A such that fix) = 1

for all x € H and iX\V) =0 and 0 <f <1 (by 0.1). So (H) £ F(f) < e . Therefore
A is finite. '

To prove A is monotone, let H, and H, are H-sets such that H, c H, and f 2 H,,
where f € H (existence of such function is ensured by 0.1), then f > H, also and hence
F(fy 2 MH,). Therefore inf{F(f) : f 2 H)} > MH), ie. MH,) = MH).

To prove A is subadditive, let H, and H, be two H-sets, then if f,f, € # be such that

f, 2 H and f, 2 H, (existence of such function is ensured by 0.1). Then f, + f, 2 H, U
H,Clearly f + f, € #, so F(f) + F(f) = F(f, + f) 2 AH, VU H)).

Then clearly | | ‘
MH) + MH,) = inf F(f)) + inf F(f,) 2 AH, U H,).

Using subadditivity, we shall prove that A is additive. Suppose H, and f, are disjoint
H-sets, then as X is 6-T,, there exist 6-bounded @-open sets W, O H, such that W, n W,
= ¢. So there exists f € H, for i = 1, 2 such that f(H) =1 and f(X\W) = 0 and 0 <
f<1(By01). If g € # be such that g 2 H L H, then

i=1

2
S AH)< S Feh)= F(ng,-]s F(g)
i=1

i=1
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and hence |
MH) + AH,) s inf (F(g) : g 2 H © H)}
ie., MH) + MH,) S MH, U H,).
Using subadditivity, additivity of A follows. Therefore A is a 6-content.

Next we shall show that A is a regular 6-content. To prove this, let H Pe an H-get
and € > 0, then by definition of A there exists a function f € #{ such taht f'> H gpq

F(f)SA(H)+%.

If ois a real number, 0 < o < 1 and K = f7'[e,0), then

Hc fLe)c f (@) < f ) = K.
So K'is an H-set [2] and since f is real valued continuous function, hence 6-continuous :

1 1 ) 1
so f~'(@,0) is B-open [since (c, o) is 6-open]. Clearly,a f2K and g f e #Halso p flx)=1

for all x € K and lf(x)=o when x € X\K.
: 4
' 1 il | £
Now,  A(K)< F(——f) - LF(f)< —{A(H) +—}.
M g 4 o o @l w2

By choosing o near enough to 1 we can write -1—().(H)+§)51’L(H)+g, Therefore
o

/'L(K)._VS MH) + €. Hence by definition of re

. : gular O-content, A is a regular G-content. So there
€XISts a unique regular 6-

Borel measure p1 such that M(H) = A(H) for every H-set H.

Next we show that if f € 2 and f 20, then

de#S F(f) s, (1). To prove this
inequality,

by linearity it is sufficient tg Prove for functions f suc

R
L)
[

{1 flsk<i-y
Oifi+1<k <

and Jx) = mf @i~1).
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m

1
Clearly, ix) = — X : . .
¥ J) m ;f"“)’ for every x € X . Since f is continuous and hence

: af k
g-continuous, so the sets U, = f I(E,M)are G-open, for k = 0, 1, 2 m and also U’s
] 9 9 9 ' k

are monotone decreasing subsets of X with U = ¢ (as 0 S f < 1)

k

We claim that- p(U) L F(f). If H be an H-set contained in U, then F, 2 H

and so

H(H)=AH) < F(f,);

and hence

w(U,) = sup u(H) < F(f,).-

Therefore we can write

F(h)

i

2| :
—

| ~

S
LI

m

- LY

m k=1

m

}—Z“(Uk)

M k=1

[\

i

2(5—5—_—1) (U
m m

k=1

m=1
Z—k—[/.t(Uk )= WU )]

k=1 m

m=l g4 1
510, -Up)-L)

|

=

m-1

;JU"_UL'—I fdu ——szu(u‘) .

v
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b jU fdu-Luy)

> | fdu-%uUo)
Since n(U,) is finite and m is arbitrary, we have I fdusF(f).

To complete our proof, it remains to show that F(f)< J.f du, for every f € 7 because

the reverse inequality i,e,,j fdu < F(f) follows by applying that inequality to —f.

So let f be a function in 9{ and H be its H-set support. The definition of 7\ shows
the existence of a function h € A such that h 2 H and F(h) < MH) + & If ho = min{h,1},

then
F(hy)< F) S ACH)+£< [y du+e

Since h, 2 H, then fh, = f. Since f is real valued continuous function and hence
o-continuous so f carries H-set to H-sets and hence is closed and bounded there, |f(x)|<B.
for all x € X, then h, (f + B) 2.0 and A(f + B) € # So by (1),

[(r+Phodn < F((f+Pho)

= F(fhy)+ F(Bhy)
| = F(D+BFC)
Therefore,
Jir+Phdn = [ ru+ B[y du
< F(f)+BF(hy)
e, RO 2 [fdu+ BU hodpt F(ho)]
2

[ fdu-pe (since, F(hy) < jho du+¢]

Since € is arbitrary,
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jfdusF(f)

Hence the theorem is complete.
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