

ON SOME CONGRUENCES IN SEMIRING

UTPAL DASGUPTA AND P. MUKHOPADHYAY

ABSTRACT : The concept of p -ideals in a semiring R was first introduced by Mukhopadhyay and Ghosh [4,5] and subsequently various characteristic features of a p -ideal in different classes of semirings were obtained in [4], [5], [6]. In the present paper, a congruence p_I induced by an ideal I of R is provided and certain basic results corresponding to this concept including the nature of the congruence when I is a p -ideal in particular, are established. In the last section, yet another congruence, Bourne p -congruence, compatible with the concept of p -ideals in a semiring is established and studied at length.

Key words : Congruence, Inversive semiring, k -ideal, full ideal, p -ideal, p -semifield.

2000 AMS Subject Classification : 16Y60

1. INTRODUCTION AND PRELIMINARIES

A semiring is a non-empty set S together with two binary operations, called “addition”, $+$, and “multiplication” (usually denoted by juxtaposition), such that S is multiplicatively a semigroup and additively a commutative semigroup and the multiplication is distributed across the addition both from the left and from the right. A semiring is said to be *commutative* if it is multiplicatively commutative. An additively cancellative semiring is called a *halfring*. An *inversive semiring* [7] S is a semiring in which $(S, +)$ is an inverse semigroup, i.e., for each $a \in S$, there is a unique element $a' \in S$ such that $a + a' + a = a$ and $a' + a + a' = a'$. It is well known [3] that, in an inversive semiring S , we have $(ab)' = a'b = ab'$ and $(a + b)' = a' + b'$. $E^+(S)$ denotes the set of all additive idempotents of S . If an ideal of the semiring contains $E^+(S)$ then it is called a *full* ideal. A semiring S is said to have an identity, if there exists $1_s \in S$ such that, $1_s x = x 1_s = x$ for each $x \in S$. The zero element of S , denoted by 0 , is called an *absorbing zero* if $a0 = 0a = 0$ for all $a \in S$. A k -ideal [2] I of a semiring S is an ideal of S such that, if $a \in I$, $x \in S$ and $a + x \in I$, then $x \in I$. A congruence ρ on S is an equivalence relation on S such that $a \rho b$ in S implies $(a + c) \rho (b + c)$, $ac \rho bc$ and $ca \rho cb$ hold for all $a, b, c \in S$. The *congruence class* of an element $a \in S$ under ρ is denoted by ap . The *quotient semiring* $\{ap : a \in S\}$ of S under ρ is defined usually and is denoted by S/ρ . It is interesting to point out that, unlike rings, ideals and congruences, in general, do not correspond bijectively in semirings. Throughout this paper \mathbb{N} represents the set of natural numbers.

Mukhopadhyay and Ghosh [4] introduced the idea of p -ideals in semirings. We recall the following definitions and results that will be useful in the sequel.

Definition 1.1. [4,5] An ideal I of a semiring S is called a p -ideal if for some $x \in S$, $n \in \mathbb{N}$,

$$nx + a = (n + 1)x \text{ and } a \in I \text{ implies } x \in I.$$

In particular, if S is *inversive*, then the definition boils down to the following:

$$\text{if for some } x \in S, a + x = 2x, a \in I \text{ then } x \in I.$$

Observe that all p -ideals are not k -ideals, as the ideal $I = 3\mathbb{Z}_0^+ \setminus \{3\}$ is not a k -ideal, in the halfring \mathbb{Z}_0^+ of all positive integers with zero but it is a p -ideal, as all ideals of a halfring are p -ideals. We also note that k -ideals are not p -ideals in general. Indeed, in the semiring $(\mathbb{Z}^+, \max, \min)$, $I_n = \{1, 2, 3, \dots, n\}$ is a k -ideal for any $n \in \mathbb{Z}^+$ but not a p -ideal. It is interesting to see that in an *inversive* semiring S , $E^+(S)$ is a p -ideal. In fact, any full ideal of an *inversive* semiring is a p -ideal.

Following result was proved in [4, 5].

Proposition 1.2. *In an *inversive* semiring S an ideal I is a p -ideal if and only if $I = I + E^+(S)$.*

In search of the smallest p -ideal containing a given ideal of a semiring the following definition was given in [4].

Definition 1.3. For any subsemiring R of a semiring S , we define,

$$\hat{R} = \{x \in S \mid a + nx = (n + 1)x, \text{ for some } n \in \mathbb{N}, a \in R\}.$$

Proposition 1.4. [4] *For any two ideals I, J of a semiring S we see that, \hat{I} is a p -ideal of S such that $\hat{\hat{I}} = \hat{I}$; $I \subseteq \hat{I}$ if $I \subseteq J$ then $\hat{I} \subseteq \hat{J}$; indeed, \hat{I} is the smallest p -ideal of S containing I .*

Note that in case of an *inversive* semiring S , for an ideal I of S ,

$$\hat{I} = \{x \in S \mid a + x = 2x \text{ for some } a \in I\}.$$

This leads us to the following result immediately:

Corollary 1.5. [4, 5] *In an *inversive* semiring S , we have $\hat{I} = I + E^+(S)$, for any ideal I .*

2. CONGRUENCE INDUCED BY A p -IDEAL

In keeping with the spirit of the concept of p -ideals in a semiring, let us now introduce the concept of a new kind of congruence induced by an ideal in a semiring S with absorbing zero.

Definition 2.1. Let I be an ideal in a semiring S . We define a *relation* ρ_I on S , *induced by* I , as follows: for $a, b \in S$,

$$a\rho_I b \Leftrightarrow \begin{aligned} na + x + b &= (n + 1)a \\ mb + y + a &= (m + 1)b, \end{aligned}$$

for some $x, y \in I$ and $m, n \in \mathbb{N}$.

Proposition 2.2. ρ_I (as defined above) is a congruence on S .

Proof. We first show that ρ_I is an equivalence relation on S . Since S has an absorbing zero, it follows that ρ_I is reflexive; whereas symmetry of ρ_I is obvious from its definition. Towards transitivity, let $a \rho_I b, b \rho_I c$ for some $a, b, c \in S$. From the definition of ρ_I we have,

- (1) $na + x + b = (n + 1)a$, and
- (2) $mb + y + a = (m + 1)b$, for some $x, y \in I$; $m, n \in \mathbb{N}$ and
- (3) $rb + z + c = (r + 1)b$, and
- (4) $sc + w + b = (s + 1)c$, for some $z, w \in I$; $r, s \in \mathbb{N}$.

Now, from (1) we have,

$$\begin{aligned} (1 + r)na + (1 + r)x + (1 + r)b &= (1 + r)(n + 1)a \\ \text{i.e. } (1 + r)na + (1 + r)x + rb + z + c &= (1 + r)(n + 1)a & [\text{by (3)}] \\ \text{i.e. } rna + na + x + rx + rb + z + c &= (1 + r)(n + 1)a \\ \text{i.e. } r(na + x + b) + na + x + z + c &= (nr + n + r + 1)a \\ \text{i.e. } r(n + 1)a + na + x + z + c &= (nr + n + r + 1)a & [\text{by (1)}] \\ \text{i.e. } (nr + r + n)a + (x + z) + c &= (nr + n + r + 1)a \\ \text{i.e. } ka + (x + z) + c &= (k + 1)a, \end{aligned}$$

where $x + z \in I$ and $k = nr + n + r \in \mathbb{N}$.

Again, we have, from (4),

$$(m + 1)sc + (m + 1)w + (m + 1)b = (m + 1)(s + 1)c$$

$$\text{i.e. } msc + sc + mw + w + mb + y + a = (ms + s + m + 1)c \quad [\text{by (2)}]$$

$$\text{i.e. } m(sc + w + b) + sc + w + y + a = (ms + s + m + 1)c$$

$$\text{i.e. } m(s + 1)c + sc + w + y + a = (ms + s + m + 1)c \quad [\text{by (4)}]$$

$$\text{i.e. } tc + (w + y) + a = (t + 1)c,$$

where $w + y \in I$ and $t = ms + s + m \in \mathbb{N}$.

Consequently, we have $a \rho_I c$ i.e., ρ_I is a transitive relation and hence an equivalence relation on S . We now show that, actually ρ_I is a congruence relation on S . Let, for some $a, b, c, d \in S$, $a \rho_I b$ and $c \rho_I d$ hold. Then we have,

$$(5) \quad na + x + b = (n + 1)a, \quad \text{and}$$

$$(6) \quad mb + y + a = (m + 1)b, \quad \text{for some } x, y \in I; m, n \in \mathbb{N} \text{ and}$$

$$(7) \quad sc + w + d = (s + 1)c, \quad \text{and}$$

$$(8) \quad td + z + c = (t + 1)d, \quad \text{for some } w, z \in I; s, t \in \mathbb{N}.$$

It is easy to see that,

$$k(a + c) + (x + w) + (b + d) = (k + 1)(a + c),$$

where $x + w \in I$ and $k = \max(n, s) \in \mathbb{N}$, and also,

$$r(b + d) + (z + y) + (a + c) = (r + 1)(b + d),$$

where $y + z \in I$ and $r = \max(m, t) \in \mathbb{N}$, which together imply that, $(a + c) \rho_I (b + d)$ hold.

We further see that, for some $c \in S$, we have from (5) and (6) that,

$$nac + xc + bc = (n + 1)ac \quad \text{and}$$

$$mbc + yc + ac = (m + 1)bc,$$

where $xc, yc \in I$ as I is an ideal, showing that, $(ac) \rho_I (bc)$ holds. In a similar manner, it can be also shown that, $(ca) \rho_I (cb)$ holds, whence ρ_I is a congruence on S .

Remark. It is interesting to note that, when I is a p -ideal, elements of I are ρ_I related only to elements of I i.e., $b \in I$ with $a \rho_I b$ implies that $a \in I$. Indeed, from $na + x + b = (n + 1)a$, for some $x \in I$ and $n \in \mathbb{N}$ [as in (5)], with $b \in I$ we have, $(x + b) \in I$, whence, as I is a p -ideal we get, $a \in I$. So we see that ρ_I saturates the p -ideal I . However, we point out that, for any two elements $a, b \in I$, it is not mandatory that $a \rho_I b$ holds;

i.e. a p -ideal I is being actually partitioned into disjoint p_I classes. Indeed, we have the following:

Proposition 2.3. I constitutes a p_I class if and only if I is a subring of S .

Proof. Let I be a subring of S , and let $a, b \in I$ be any two elements of I . Then choosing $x = a - b \in I$ and $y = b - a \in I$ it can be easily seen that the conditions (5) and (6) of Proposition 2.2 are automatically satisfied, for any $m, n \in \mathbb{N}$ whence $ap_I b$ holds, showing thereby that, I is a single p_I class.

Conversely, let I be a p_I class, i.e., for all $a, b \in I$, $ap_I b$ holds. Since I is an ideal of S , we have $0 \in I$, which indicates, $ap_I 0$ must hold good; whence for any $a \in I$ we get that there exists some $y \in I$ such that $a + y = 0$, showing that I is a subring of S .

Proposition 2.4. For any ideal I of a semiring S , $S/I = S/\hat{I}$.

Proof. Since $I \subseteq \hat{I}$, $ap_I b \Rightarrow ap_{\hat{I}} b$ for any $a, b \in S$.

Conversely, let $ap_{\hat{I}} b$ hold for some $a, b \in S$. Then,

$$(1) \quad na + x + b = (n + 1)a \quad \text{and}$$

$$(2) \quad mb + y + a = (m + 1)b$$

for some $x, y \in \hat{I}$ and $m, n \in \mathbb{N}$. Now, since $x, y \in \hat{I}$, we have that

$$(3) \quad kx + i_1 = (k + 1)x \quad \text{and}$$

$$(4) \quad ly + i_2 = (l + 1)y$$

for some $i_1, i_2 \in I$ and $k, l \in \mathbb{N}$. Then from (3), we have that,

$$kx + i_1 + (k + 1)b + n(k + 1)a = (k + 1)x + (k + 1)b + n(k + 1)a$$

$$\text{i.e. } k(na + x + b) + na + i_1 + b = (k + 1)(na + x + b)$$

$$\text{i.e. } k(n + 1)a + na + i_1 + b = (k + 1)(n + 1)a \quad [\text{from (1)}]$$

$$\text{i.e. } pa + i_1 + b = (p + 1)a \quad \dots(1)$$

where $p = kn + k + n \in \mathbb{N}$.

Now from (4), we have that,

$$ly + i_2 + (l + 1)a + m(l + 1)b = (l + 1)y + (l + 1)a + m(l + 1)b$$

$$\text{i.e., } l(mb + y + a) + mb + i_2 + a = (l + 1)(mb + y + a)$$

$$\text{i.e., } l(m+1)b + mb + i_2 + a = (l+1)(m+1)b \quad [\text{from (2)}]$$

$$\text{i.e., } qb + i_2 + a = (q+1)b \quad \dots(ii)$$

$$\text{where } q = lm + l + m \in \mathbb{N}.$$

Hence from (i) and (ii), we conclude that $a\wp_I b$ holds.

Proposition 2.5. For any ideal I of a semiring S and for any $a\wp_I \in P^+(S/I)$ there exists $i \in P^+(S)$ such that $b = a + i \in P^+(S)$ and $a\wp_I = b\wp_I$.

Proof. Let $a\wp_I \in P^+(S/I)$. Then, for some $n \in \mathbb{N}$, $nap_I = (n+1)a\wp_I$. Hence we have the following:

$$k(na) + i + (n+1)a = (k+1)na, \quad l(n+1)a + j + na = (l+1)(n+1)a$$

for some $k, l \in \mathbb{N}$ and $i, j \in I$. Suppose, $p = \max. \{l, k\}$. Then,

$$(1) \quad p(na) + i + (n+1)a = (p+1)na \text{ and}$$

$$(2) \quad p(n+1)a + j + na = (p+1)(n+1)a$$

Now from (1), we have that,

$$(pn + n)a + (a + i) = (pn + n)a \quad \dots(iii)$$

$$\text{i.e., } (pn + n)a + (a + i) + (pn + n)i = (pn + n)a + (pn + n)i$$

$$\text{i.e., } (pn + n)(a + i) + (a + i) = (pn + n)(a + i)$$

$$\text{i.e., } (pn + n + 1)(a + i) = (pn + n)(a + i)$$

$$\text{i.e. } b = a + i \in P^+(S).$$

From (2), we have that,

$$(pn + n + p)a + j = (pn + n + p + 1)a$$

$$\text{i.e., } (pn + n + p)a + j + (a + i) = (pn + n + p + 1)a \quad [\text{from (iii)}]$$

$$\text{i.e., } ma + j + b = (m + 1)a \quad \dots(\alpha)$$

$$\text{where } m = pn + n + p \in \mathbb{N}.$$

$$\text{Moreover, } (a + i) + i + a = 2(a + i), \text{i.e., } b + i + a = 2b \quad \dots(\beta)$$

(α) and (β) together imply that $a\wp_I = b\wp_I$.

Remark 2.6. Since for any $a \in P^+(S)$, $a\wp_I \in P^+(S/I)$, so from Proposition 2.5., $P^+(S/I) = \{a\wp_I : a \in P^+(S)\}$.

Proposition 2.7. For any ideal I of a semiring S , $P = \bigcup_{a \in P^+(S)} a\wp_I$ is a p -ideal of S , contained in \hat{I} .

Proof. For any, $p, q \in P$, $\exists a, b \in P^+(S)$ such that $p \in a\wp_I$ and $q \in b\wp_I$. Then, $p + q \in (a + b)\wp_I$ and $xpy \in (xay)\wp_I$ for any $x, y \in S$ and hence P is an ideal of S .

Let $x \in \hat{P}$ be arbitrary. Then, $\exists b \in P$ and $m \in \mathbb{N}$ such that $mx + b = (m + 1)x$. Hence, $mx\wp_I + b\wp_I = (m + 1)x\wp_I$ whence $x\wp_I \in P^+(S/I)$ (since $P^+(S/I)$ is a p -ideal of the semiring S/I and $b\wp_I \in P^+(S/I)$). Hence $x \in P$. So, P is a p -ideal of S . Now $b \in P = \bigcup_{a \in P^+(S)} a\wp_I \Rightarrow \exists a \in P^+(S)$ such that $b \in a\wp_I$. Thus, there exist $k \in \mathbb{N}$ and $j \in I$ such that $kb + j + a = (k + 1)b$. Thus $b \in P$ (since P is p -ideal of S and $P^+(S) \subseteq I$).

Proposition 2.8. In an inversive semiring S , the \wp_I classes of a full k -ideal I , and hence \wp_I classes of a p -ideal I which is also a k -ideal, are precisely the idempotents of S/\wp_I .

Proof. We recall that in an inversive semiring S , any full ideal is a p -ideal. Let I be a full k -ideal in S . We show that,

$$E^+(S/\wp_I) = I/\wp_I$$

Indeed, let $a\wp_I \in E^+(S/\wp_I)$, for some $a \in S$, so that, $a\wp_I 2a$ gives $3a + x = 2a$ and $3a + y = 4a$ for some $x, y \in I$ where the second relation gives $a + y = 2a$ on addition of adequate number of a' in both sides, giving that, $a \in I$ i.e., $a\wp_I \in I/\wp_I$ so that,

$$E^+(S/\wp_I) \subseteq I/\wp_I$$

Conversely, we assume $a\wp_I \in I/\wp_I$ so that, $a \in I$ which is a full k -ideal of S . Then $a\wp_I 2a$ holds; indeed, I being a full k -ideal we have $a' \in I$ so that, $a + a' + 2a = 2a$ and $2a + a + a = 4a$ establishes our claim; hence $a\wp_I \in E^+(S/\wp_I)$ i.e.,

$$I/\wp_I \subseteq E^+(S/\wp_I)$$

Hence the result follows.

3. BOURNE p -CONGRUENCE

Definition 3.1. Let I be an ideal in a semiring S . We define a relation \wp_I on S , induced by I , as follows: for $a, b \in S$,

$$a\rho_I b \Leftrightarrow na + x_1 + b = (n+1)a + x_2$$

$$mb + y_1 + a = (m+1)b + y_2,$$

for some $x_1, x_2, y_1, y_2 \in I$ and $m, n \in \mathbb{N}$.

Remark 3.2. For any ideal I of a semiring S , if \equiv_I denotes the Bourne relation [1] on S , then $\equiv_I \subseteq \rho_I$. Indeed, let for any $a, b \in S$, $a \equiv_I b$. Then, $\exists i, j \in I$ such that $a + i = b + j$ and so by adding a and b separately to both the sides, we get, $a + j + b = 2a + i$ and $b + i + a = 2b + j$ whence $a\rho_I b$ holds.

Proposition 3.3. ρ_I (as defined above) is a congruence on S .

Proof. We first show that ρ_I is an equivalence relation on S . Since S has an absorbing zero, it follows that, ρ_I is reflexive; whereas symmetry of ρ_I is obvious from its definition. Towards transitivity, let $a \rho_I b, b \rho_I c$ for some $a, b, c \in S$. From the definition of ρ_I we have,

$$(1) \quad na + x_1 + b = (n+1)a + x_2, \quad \text{and}$$

$$(2) \quad mb + y_1 + a = (m+1)b + y_2, \quad \text{for some } x_1, x_2, y_1, y_2 \in I; m, n \in \mathbb{N} \text{ and}$$

$$(3) \quad rb + z_1 + c = (r+1)b + z_2, \quad \text{and}$$

$$(4) \quad sc + w_1 + b = (s+1)c + w_2, \quad \text{for some } z_1, z_2, w_1, w_2 \in I; r, s \in \mathbb{N}.$$

Now from (1) we have that,

$$(r+1)na + (r+1)x_1 + (r+1)b + z_2 = (r+1)(n+1)a + (r+1)x_2 + z_2$$

$$\text{i.e., } (r+1)na + (r+1)x_1 + rb + z_1 + c = (r+1)(n+1)a + (r+1)x_2 + z_2 \text{ [from 3]}$$

$$\text{i.e., } na + r(na + x_1 + b) + z_1 + x_1 + c = (r+1)(n+1)a + (r+1)x_2 + z_2$$

$$\text{i.e., } na + r[(n+1)a + x_2] + x_1 + z_1 + c = (r+1)(n+1)a + (r+1)x_2 + z_2 \text{ [from 1]}$$

$$\text{i.e., } (rn + n + r)a + [rx_2 + x_1 + z_1] + c = (rn + n + r + 1)a + [(r+1)x_2 + z_2]$$

$$\text{i.e., } pa + i_1 + c = (p+1)a + i_2 \quad \dots (\alpha)$$

where $p = rn + n + r \in \mathbb{N}$ and $i_1 = rx_2 + x_1 + z_1, i_2 = (r+1)x_2 + z_2 \in I$.

Again, from (4) we have that,

$$(m+1)sc + (m+1)w_1 + (m+1)b + y_2 = (m+1)(s+1)c + (m+1)w_2 + y_2$$

$$\text{i.e., } (m+1)sc + (m+1)w_1 + mb + y_1 + a = (m+1)(s+1)c + (m+1)w_2 + y_2 \text{ [from 2]}$$

$$\text{i.e., } (m+1)sc + (m+1)w_1 + mb + y_1 + a = (m+1)(s+1)c + (m+1)w_2 + y_2$$

$$\text{i.e., } sc + m(sc + w_1 + b) + w_1 + y_1 + a = (m+1)(s+1)c + (m+1)w_2 + y_2$$

$$\text{i.e., } sc + m[(s+1)c + w_2] + w_1 + y_1 + a = (m+1)(s+1)c + (m+1)w_2 + y_2 \text{ [from 4]}$$

$$\text{i.e., } (ms + m + s)c + [mw_2 + w_1 + y_1] + a = (ms + m + s + 1)c +$$

$$[(m+1)w_2 + y_2]$$

$$\text{i.e., } qc + j_1 + a = (q+1)c + j_2 \quad \dots (\beta)$$

$$\text{where } q = ms + m + s \in \mathbb{N} \text{ and } j_1 = mw_2 + w_1 + y_1, j_2 = (m+1)w_2 + y_2 \in I.$$

Clearly (α) and (β) together imply that $a\varphi_I c$ holds i.e., the relation φ_I is transitive. So, φ_I is an equivalence relation. We now show that, actually φ_I is a congruence relation of S . Let, for some $a, b, c, d \in S$, $a\varphi_I b$ and $c\varphi_I d$ hold. Then we have,

$$(5) \quad na + x_1 + b = (n+1)a + x_2, \quad \text{and}$$

$$(6) \quad mb + y_1 + a = (m+1)b + y_2, \quad \text{for some } x_1, x_2, y_1, y_2 \in I; m, n \in \mathbb{N} \text{ and}$$

$$(7) \quad sc + w_1 + d = (s+1)c + w_2, \quad \text{and}$$

$$(8) \quad td + z_1 + c = (t+1)d + z_2, \quad \text{for some } w_1, w_2, z_1, z_2 \in I; s, t \in \mathbb{N}.$$

It is easy to see that,

$$k(a + c) + (x_1 + w_1) + (b + d) = (k+1)(a + c) + (x_2 + w_2),$$

$$\text{where } x_1 + w_1, x_2 + w_2 \in I \text{ and } k = \max(n, s) \in \mathbb{N}, \text{ and also,}$$

$$r(b + d) + (y_1 + z_1) + (a + c) = (r+1)(b + d) + (y_2 + z_2),$$

$$\text{where } y_1 + z_1, y_2 + z_2 \in I \text{ and } r = \max(m, t) \in \mathbb{N}, \text{ which together imply that,}$$

$(a + c)\varphi_I(b + d)$ hold.

we further see that, for some $c \in S$, we have from (5) and (6) that,

$$nac + x_1c + bc = (n+1)ac + x_2c \quad \text{and}$$

$$mbc + y_1c + ac = (m+1)bc + y_2c,$$

where $x_1c, x_2c, y_1c, y_2c \in I$ as I is an ideal, showing that, $(ac)\varphi_I(bc)$ holds. In a similar manner, it can be also shown that, $(ca)\varphi_I(cb)$ holds, whence φ_I is a congruence on S .

Proposition 3.4. For an ideal I of a semiring S , $P = \{a \in S : a\varrho_I \in P^+(S/I)\}$ is a p -ideal of S containing I . also, $\bar{I} = \bar{P}$.

Proof. Let $a, b \in P$. Then $\exists n, m \in \mathbb{N}$ such that $n a \varrho_I = (n+1) a \varrho_I$ and $m b \varrho_I = (m+1) b \varrho_I$, whence $k(a+b)\varrho_I = (k+1)(a+b)\varrho_I$ where $k = \max\{n, m\}$. thus $a+b \in P$. For any $x \in S$, $n a \varrho_I = (n+1) a \varrho_I \Rightarrow n x a \varrho_I = (n+1) x a \varrho_I$, $n a x \varrho_I = (n+1) a x \varrho_I \Rightarrow x a, a x \in P$. So, P is an ideal of S .

Let $x \in S$ such that $nx + a = (n+1)x$ for some $a \in P$ and $n \in \mathbb{N}$. Then, $nx\varrho_I + a\varrho_I = (n+1)x\varrho_I \Rightarrow x\varrho_I \in P^+(S/I)$ (since, $P^+(S/I)$ is a p -ideal of S/I and $a\varrho_I \in P^+(S/I)$) $\Rightarrow x \in P$. So, P is a p -ideal of S .

Since, $0 \in I$, for any $i \in I$, $i + i + 0 = 2i + 0$ and $0 + i + i = 0 + 2i$ which together imply that, $i\varrho_I 0$ holds for all $i \in I$. Hence, $I \subseteq 0\varrho_I$. Clearly, $\bigcup_{a \in P^+(S)} a\varrho_I \subseteq P$; so, in particular $0\varrho_I \subseteq P$. Consequently, $I \subseteq P$. So, $\bar{I} \subseteq \bar{P} = \bar{P}$ (since, P is a p -ideal of S). Conversely, let $x \in \bar{P}$. Then, $x + p = q$ for some $p, q \in P$. Now, $p \in P \Rightarrow n p \varrho_I = (n+1)p\varrho_I$ for some $n \in \mathbb{N} \Rightarrow k(n+1)p + i + np = (k+1)(n+1)p + j$ for some $i, j \in I$ and $k \in \mathbb{N} \Rightarrow (kn + k + n)p + i + (kn + k + n)j = (kn + k + n + 1)p + j + (kn + k + n)j \Rightarrow (kn + k + n)(p + j) + i = (kn + k + n + 1)(p + j) \Rightarrow p + j \in \hat{I} \Rightarrow p \in \hat{I}$. Similarly, $q \in \hat{I}$. Thus, $x + p = q \Rightarrow x \in \hat{I}$.

Proposition 3.5. If I is a p -ideal of S , then $S/I = S/\bar{I}$ with $P^+(S/I) = \{0\varrho_I\}$.

Proof. Since, $I \subseteq \bar{I}$, it is immediate to write that $a\varrho_I b \Rightarrow a\varrho_{\bar{I}} b$ for any, $a, b \in S$. Conversely, let $a, b \in S$ such that $a\varrho_{\bar{I}} b$ holds. Then,

$$(1) \quad na + x_1 + b = (n+1)a + x_2,$$

$$(2) \quad mb + y_1 + a = (m+1)b + y_2,$$

for some $x_1, x_2, y_1, y_2 \in \bar{I}$; $m, n \in \mathbb{N}$. Moreover,

$$(3) \quad x_1 \in \bar{I} \Rightarrow x_1 + i_1 = i'_1,$$

$$(4) \quad x_2 \in \bar{I} \Rightarrow x_2 + i_2 = i'_2,$$

$$(5) \quad y_1 \in \bar{I} \Rightarrow y_1 + j_1 = j'_1,$$

$$(6) \quad y_2 \in \bar{I} \Rightarrow y_2 + j_2 = j'_2,$$

for some $i_k, i'_k, j_k, j'_k \in I$ ($k = 1, 2$); $m, n \in \mathbb{N}$. Now, from (1), (3), (4) we have that,

$$na + (x_1 + i_1) + i_2 + b = (n+1)a + (x_2 + i_2) + i_1 \Rightarrow na + (i'_1 + i_2) + b = (n+1)a + (i'_2 + i_1) \\ \Rightarrow na + i + b = (n+1)a + i' \dots (\alpha), \text{ where } i = i'_1 + i_2, i' = i'_2 + i_1 \in I.$$

Again, from (2), (5), (6) we have that,

$$mb + (y_1 + j_1) + j_2 + a = (m+1)b + (y_2 + j_2) + j_1 \Rightarrow mb + (j'_1 + j_2) + a = \\ (m+1)b + (j'_2 + j_1) \Rightarrow mb + j + a = (m+1)b + j' \dots (\beta), \text{ where } j = j'_1 + j_2, j' = j'_2 + j_1 \in I.$$

Thus, from (α) and (β) , $a\wp_I b$ holds.

Now, from Proposition 3.3 $\bar{I} = \bar{P}$ (since, I is a p -ideal). Consequently, $\bar{I} \subseteq \{a \in S : a\wp_{\bar{I}} \in P^+(S/\bar{I})\}$ (Proposition 3.) $= \{a \in S : a\wp_I \in P^+(S/I)\} = P \subseteq \bar{P} = \bar{I}$ whence $\bar{I} = P$. It is easy to show that $0\wp_I$ is a k -ideal of S . Hence, $P = \bar{I} \subseteq 0\wp_I \subseteq P \Rightarrow P = 0\wp_I \Rightarrow P^+(S/I) = \{0\wp_I\}$.

Proposition 3.6. If I is a maximal p -ideal of a commutative semiring S , such that $\bar{I} \neq S$, then S/I is a p -semifield.

Proof. Since, I is a maximal p -ideal and $\bar{I} \neq S$, so $I = \bar{I} = 0\wp_I$ and thus $P^+(S/I) = \{0\wp_I\} = \{I\}$. Let J be a p -ideal of S/I such that $P^+(S/I) \subseteq J \subseteq S/I$. Let us write, $J_0 = \{a \in S : a\wp_I \in J\}$. Clearly, J_0 is p -ideal of S . Moreover, since $\{I\} = P^+(S/I) \subseteq J$, so $I \subseteq J_0$. Then, by the maximality of I as p -ideal, $J_0 = S$. So, $J = S/I$. Hence, S/I is a p -semifield.

REFERENCES

1. **Golan, J. S.**: The theory of semirings with applications in mathematics and theoretical computer science, *Pitman Monographs and Surveys in Pure and Applied Mathematics* 54, Longman Sci. Tech. Harlow, (1992).
2. **Henriksen, M.** (1958) : Ideals in semirings with commutative additions; *AMS Notices* 6, 321.

3. Karvellas, P.H. (1974) : Inversive semirings; *J. Austral. Math. Soc.* **18**, 277-288.
4. Mukhopadhyay, P. and Ghosh, S. (1999) : A new class of ideals in semirings; *Southeast Asian Bull. Math.* **23**, 253-264.
5. Sen, M. K., Mukhopadhyay, P. and Ghosh, S. (1999) : A study of a new class of ideals in semirings; *FILOMAT* **13**, 41-52.
6. Sen, M.K., Mukhopadhyay, P. and Ghosh, S. (2002) : p -ideals in p -regular semirings; *Southeast Asian Bull. Math.* **26** (3), 439-452.
7. Yusuf, S.M. (1965) : Ideals in additively inversive semirings; *J. Nat. Sci. Math.* **5**, 45-56.

Department of Mathematics,
 Shri Chaitanya College
 Prafullanagar, Habra, West Bengal
 Pin - 743268, India
 E-mail: dasgupta_utpal@yahoo.co.in

Department of Mathematics
 R. K. Mission Residential College
 Narendrapur, Kolkata-700103, India
 E-mail: dugumita@vsnl.net