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2 TAKASHJ NOIRl .AND VALERJU POPA 

Definition 2.1. Let (X. t) be a topological space. A s_ubset A of Xis said to be a-open 1251 
(resp. semi-open [ 18], ,,reopen [22). P•open { 1] or sem11;reope11 [J ]. h•open [ 4] or'( ·open [ 11 l) 
if A c Int(Cl(Int(A))) (resp. A c Cl(lnt(A)), A c lnt(Cl(A)), A c Cl(lnt<Cl(A))), 
.4 c lnt(Cl(A))uCl(lnt(A))). 

The family of all semi-open (resp. preopen, ex-open, P•open, scmi-preopen, h-open} set<; 
in X is denoted by SO(X) (resp. PO(X), ex{X), ~(X), SPO(X), BO(X)). 

Definition 2.2. The complement of a semi-open (resp. preopen, a-open, ~-open, semi-preopen, 
b-open) set is said to be semi-closed [9] (resp. preclosed [ I OJ, a-closed [23 ], ~-closed [l J, 
semi-preclosed [3], b-closed [4]). 

Definition 2.3. The intersection of all semi-closed (resp. preclosed, ex-closed, ~-closed, semi­
preclosed, b-closed) sets of X containing A is called the semi-closure [9J (resp. pre-closure 
[10], a-closure [23], ~-closure [2], semi-preclosure [3], b-closure [4]) of A and is denoted by 
sCJ(A) {resp. pCl(A), aCl(A), pCl(A), spCl(A), bCl(A). 

Definition 2.4. The union of all semi-open (resp. prepen, a-open, ~-open, semi-preopen~ h-openJ 
sets of X contained in A is called the semi-interior (resp. preinterior, a-interior, ~-interior, sem1-
preinlerior, b-interior) of A and is denoted by slnt(A) (resp. plnt(A), alnt(A), ~lnt(A). splnt(A), 
blnt(A)). 

Throught the present paper, (X, 't) and (Y, a) (briefly X and Y) always denote topological 
spaces and F : X ➔ Y (resp. f: X ➔ Y) presents a multivalued (resp. single valued) function. 
For a multifunction F : X ➔ Y, we shall denote the upper and lower inverse of a subset B 
of a space Y by P(B) and F""(B), respectively, that is 

f'T(B) == {x e X : F(x) c B} and F""(B) = {x e X : F(x) ri B ~ 0} . 

Definition 2.S. A function f: (X, 't) ➔ (Y, 't) is said to be open at a point x e X if for each 
open set U containing x, there exists an open set V of Y containing l{x) such that rc1{ l ). 
If f is open at each point x e X, then f is said to be open. 

Remark 2.1. A function f: (X, -c) ➔ (Y, a) is open if nnd only if fl... U) is open for each ope-n 
set U of X. 

Definition 2,6. function f: (X, 't) -➔ (Y, <r) is said to be semi-open [261 vesp. preopen [221, 
a-open [23 ], P-open l I j) if /{ U) is semi-open (resp. preopc~. tx•open, ~-open) for \!ach open 
set U of X. 

Definition 2.7. A multifunction F : (X, 't) - > (Y, O') is said h> be open [Sl (resp. semi-<>~11 

(29], preopen l8], a-open [7J, P-open) if F(U) is open (resp. semi-opcu, preopcn, a-open. 
P-open) for each open set U of X. 
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3. MINl1\1AL STRUCTURES AND m-OPEN MU.LTIFUNCITONS 

Definition 3.1. A subfamily mx of the power set ,l'(X) of a nonempty set X is called a minimal 
structure ( or briefly m-structure) PO], [31] on X if 0 e m x and X E m x· 

By (,t: mx) (or briefly (.,¥, m)), wc denote a nonempty set X with a minimal structure 

mx on X and call it an m-space. Each member of mx is said to be my-open (or briefly m-open) 

and the complement of an my-open set is said to be my-closed ( or briefly m-closed). 

Definition 3.2. Let X be a nonempty set and mx an m-structure on X. For a subset A of X, 

the mx-closure of A and the mx-interior of A are defined in [21] as follows: 

(l) m.\-Cl(A) = n{F : A c F, X - FE mx}, 

(2) mx-Int(A) = u{ U : Uc A, U e mx}. 

Remark 3.1. Let (X, t) be a topological space and A be a subset of X If mx = t (resp. SO( X). 

PO(X). n(X), P(X), BO(X)), then we have 

(a) mx-Cl(A) = Cl(A) (resp. sCl(A), pCl(A), aCl(A, pct(A), bCl(A)), 

(b) mx-Int(A) = Int(A) (resp. slnt(A), plnt(A), alnt(A, Pint(A), blnt(A)). 

Lemma 3.1. (Maki et al. [21]). Let (X, mx) be an m-space. For subsets A and B of .X. the 

following properties hold: 

(l) mx-Cl(X - A) = X - mx-Int(A) and mx-Int(X - A) = X - mx-Cl(A). 

(2) If (X - A) e mx, then mx-Cl(A) = A and if A e mx, then m_..-Int(A) = A, 

(3) mx-Cl( 0) = 0, m,y-Cl(X) = X, mx-Int( 0) = 0 and m,t'Int(X) = X, 

(4) If A c B, then mx-Cl(A) c mx-Cl(B) and m,y-lnt(A) c m_y-lnt(B). 

(S) A c mx-Cl(A) and mx-Int(A) c A, 

(6) mx--Cl(m,y-Cl(A)) ""' mx-Cl(A) and mx-lnt(m_y-lnt(A)) = m_,-lnt(.4). 

Lemma 3.2. (Popa and Noiri [30]). Let (.Y, mx) be an m-spdce and A a subset (.f .X. Then 

x E mx-Cl(A) if and only if Un A 'i:- 0 for every U e m.r containing x. 

Deflaitio■ 3.3. A minimal structure mx on a nonempty set Xis said tv have propt1rty ~ [::?1] 
if the union of any family of subsets belonging to m,\' belongs to "',\• 

Deflaltioa 3.3. (Popa and Noiri [321). L,•t (X. mx) be m, t1hfp,1n· ""d "'x ~an:efy pruperty '8. 

11ren for a subset A of X. the j,11/uwing properties hold: 

(I) A e "'x if and only if "'x .. Jnt(A) = A, 

(2) A is m-c/osed if and 011/y if 111,\-Cl(A) • A, 
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(3) m,r--lnt(A) t= m,\ and m-' .. Cl(A) is m,(clmed. 

Rc.-mark 3.2, Let (...¥. t) be a topologic,il spac:.:c and mx :::: SO(X) (resp. PO{X), u.(X). B(X). 

l3()(X)). then m, satisfies propcr1y 1r. 

Definition 3.4. 1 ct (J'.ml) be an m-spacc. 

(l) A multifunction ,F' : (X, -r) ➔ ( V, my) is said to be m•open at x 6 X if for each 
\)pen set l' containmg x. there exists V E my containing F(x) such that V c F( U). If F is 

m--0pen at each point .x E ..¥, then F is said to be m-open. 

(2) A function f: (X t) ➔ (Y, my) is said to be m-open at x E X if for each open set 

C containing x, there exists VE my containing f(x) such that V c -/{ U). If f is m-open at each 

point X E X then r is said to be m-open. 

Theorem 3.1. A multifimction F: (X, 't) ➔ (Y, my) ism-open at x E X where my has property 
is, if and 011/y if for each open set U containing, x, x E F+(my-Int(F( U))). 

Proof. Ji:ecessity. Let Ube an open set containing x. Then, there exists VE my such that F(t) 

c V c F(U) and hence F(x) c my-Int(F(U)). Therefore, we obtain that .x E r(m1-Im(F(u))). 

SiqfJCiency. Suppose that x E P(my-Int(F(U))) for each open set U containing x. Then 
F.(x) c m,,-int{F(U)). Set V= my-Int(F(U)), then by Lemma 3.3 Ve my and F(x) c Ye F(U). 
Therefore, Fis m-open at x. 

Theorem 3.2. A multifunction F: (X, 't) ➔ (Y, my) is m-open. where (Y.my) has property B. 

if and only if F(lf) is my-open for each open set U of X. 

Proof. Nece5sify. Let U be an open set of X and x E U Since F is nH)pen at .r e .¥, by 

Theorem 3.1 we have .F(x) c my-lnt(F( U)) and by Lemma 3.1 F(ll) ::c mr•lnt(F(U)). By Lemma 

J.3. F(Uj is my-open. 

Sufficiency. Let x e X and U be an open set of X l'Ontaining x. Then we hn'te F(r) 

c F(U,;;::; mf"'fnt(F(U}), 111erdore x <-;; r>+(mr'"l11t(F(U)). By l'het)rem 3.1, Fis 1tH)pen nt nrhitra.ry 
point X ,E X. 

Remar.k J.3. (a) ff F : (X, it) ,..., ( Y, O) is a nmltifun1.:itn11 und m> = 't (resp. SO(};, PO(Y). 

a(f}, fj( Y)j, we obtain Defo1itiw1 2. 7, that is, the defi11itio11 l)f an op~n (resp. semi~open, prt'-Open. 
u~open, ~-o,>en} muhifunctiou, where SO( Y) (resp, PO( n. fX(f) 1 f't Y)) it1 thiJ fomily \_)fall s(;'mi­
open (resp. preopen, U.••·opcn, fl-open} set~ of Y, 

(b) If f: (X. 1) 1 0', a) i~ a function nnd "'r • o (resp. SO(Y), PO{}). ll(}'), ~tn). 
we obtain Definition 2.6. 

Theorem 3.3. For a multifimclion F ; (X, t) ➔ ( Y. m1,), where"'> has property g, the follou·ing 
propertie$ are equivalent: · · 
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( i ) F is m-ope11 <II x: 

(2) Jf ,. e lnt{A) for A c P(A')t then "'. E /•'•(my-lnt(P(,1))); 

(3) 1 € Int(/? (B)) for lJ e P:,(}), I/Jen x e F+(mf'lnt(lJJ); 

(4) ff .r E f"1.mr•Cl{B)) for lJ e ~Y}. then x E Cl(P (B)). 

Proof. (I) ⇒ (2) : Let A E ~.,\') and .r E lnt(A). Then, there exists ;in open set U such that 

.1r E Cc .4 and hence r"'{x) c F(lf) c F(A). Since F is m-open at x, by Theorem 3. J and 
lemma .3 L we obtain " e F+(mr•lnt(F(U))) c F~(m}.-lnt(F(A)))J. 

(2) ⇒ (3) : Let B e it'(Y) and x E Int (F+(B)). Then. x E f'+(mrfnt(F(F'"(B)))) ,:: 
P'(m1-Int(B)). 

(3) ⇒ (4) : Let B E ~(Y) and x ~ Cl(P-(B)). Then x E X - Cl(F (B)) = Int(X -

r(B)) ""' lnt(r-(Y - B)). By (3) we have x E P(my-Int(Y-B)) = X - F ·(my-Cl(B)). Hence, 
x E P--{m} -Cl(B)). Therefore, if x E P-(my-Cl(B)), then x E Cl(F-(B)). 

( 4) ⇒ (1) : Let U be any open set of X containing x and B = Y - F( U). Since 

Cl(P-(B)) = Cl(r(Y -F(U))) = Cl(X - F+(F(U))) c X - Int(U) = X - U and .x E U. we obtain 

that x € Ci(F-(B)). By ( 4), we have x E= P-(my-Cl(B)) = P-(m~~Cl(Y - F(U))) = X -

F*{mr•lnt{F(uj)). Therefore, x E F'-(my-Int(F(U))). By Theorem 3.1, Fis m-open at .t. 

Tlleorem 3.4. For a multifunciton F: (X, 't) ➔ (Y, my), where my has properry z. the following 
properties are equivalent: 

(1) F is m-open; 

(2) ftlnt(A)) c my-Int(F(A)) for any subset A of X: 

(3} fot(r(B)) c F ,.(my-lnt(B)) for any subset B of Y.· 

(4) P-(m1...C1(B)) c Cl(r(B)) for any subset B of Y. 

Proof. O> ⇒ (2) : Let A be any subset of X and x e lnt(A). Sith:e F is m-open at ead1 " 
e A. by Theorem 3.3 F(x) c: mr ... fnt(F(A). Hence F(lnt(A)) c: m> .. Int(.F(AJ). 

(2) ⇒ (3): Let B be any subset of l'. By (2), w~ hnve H(lnt(J."+{B))) c: ml•lnt{F(r{B))) 
c my-lnt{B). · 

(3 J ⇒ ( 4 ): Let /J he any subset of' }'. By (3 ), we hn\'e X - C'l(f'"(/3)) ;a;: Int(X - r -(B)) 

~ lnt.(F,.(Y · BJ) c /•~(my--lnt(Y /I)) Ill::; ,\' J,' (111 1.-( 'J(U)). llen~e, F' (mt ... ('l(B)) c Cl(J.'-(Il)). 

{4) ⇒ (I): Let {J be any open ~ct uf K nnd lf 11:i Y "" fXU). By (4), we hme 

F (my-Cl(Y - F(llJ)) c Cl(P (Y F(l/)) . Now; /i'-Vnl'"'C ll>' f'(l/))) ~ P·(Y- mr•lnt(F({}))) 

::i X - F ... (my-lnt(F((l)}). And also we havll Cl(F (}f F( ll))) i; Cl(,\' - F~(F( U))) c X - lnt(U) 

:: X - U. Therefore, we obtain U c J,--i(m>~lnt(F(l/))) and hetH:e F(l/) c m>-lnt (F(l')). By 
Lemma 3.1, F(U) = "'r•lnt(F(l/) and by Thtorcm 3.2, Fis nh,pen. 
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R('mark 3.4. Let F : (X t) ➔ ( Y, cr) be a niultifonctio11 and my "" SO(X). Then hy Theorem 
J.4. we obtain the result established in Lemma 5.2 of [29]. 

For a multifunction F : (X, cr) ➔ ( Y, my), we denote 

o0(F) .::! {x E X : F is not m-open at x}. 

Theorem 3.5. For a mult[fimction F: (X, 't) ➔ (Y. my), where my has property 'Z, the following 
propi?rlics hold: 

D
0
(F) = UUE"t{ V - r(my-Int(F(U)))} 

= u Ae P(,\"I {Int(A) - F\my-lnt(F(A)))} 

== uBeP<i·){lnt(F1"(B)) - F1"(my-Int(B))} 

= UBeP(rl{r(my-Cl(B) - Cl(r(B))}. 

Proof. Let .x E D0
(F). Then, by Theorem 3.1, there exists an open set V

0 
containing x such 

that x e F1"(my-lnt(F(V0))). Hence x e V0 n (X\ F1"(my-Int(F(U
0
)))) = V

0 
\ P(my-Int(F(Uo))) 

c Uuer{ U - r"(my-Int(F(U)))}. 

Conversely, let x e Uue 1 {U- P(my-Int(F(U)))}. Then there exists U
0 

e 't such that 
x E U0 - P{my-Int(F(U0))). Therefore, by Theorem 3.1 x e D0(F). 

For the second equation, let x e D0(F). Then, by Theorem 3 .3, there exists A. E .P(.'D 
such that x E Int(A 1) and x e F1"(my-lnt(F(A 1))). Therefore, x e Int(A

1
) - r(m,Int(F(.-1

1
))) 

c U A1=['.{x){lnt(A) - F1"(my-Int(F(A)))}. 

Conversely1 x e uAeP(x){lnt(A) - P(my-lnt(F(A)))}. Then there exists A
1 

E P{.-1) such 
rhat x E lnt(A 1) - F1(my-Int(F(A 1))). By Theorem 3.3, x e D0(f). 

The other equations are similarly proved. 

4. MINIMAL STRUCTURES AND BITOPOLOGICAL SPACES 

Throughout the present paper, (X, 't 1, t 2) and ( Y, cr 1, o-2) denote bitopologi~;.i1 spa~es For a 
~uhset A of X, the closure of A and the interior of A with respect to 'ti are denoted by iClvn 
and iJnl(A), respectively, for i = I, 2. First, we shall recall some definition~ of \\t~al... fonns 
of open sets in a bitopological space. 

Definition 4.J. A subset A of a bitopologicul '\J)ncc (.\', t
1
, t

2
) is snid to bl! 

(1 ~ (i, J) .... w•mi-open r20] if A r_ iCl(tlut(A)), Whlire i :t- j. i, j = I, 2, 

{2) (i, j}-pn,open I 12J if A c ilnt(iCl(A)), where i ~ j, i, j = I. 2, 

(3) (i, j},1.-open I 13J if A c il11t(iCl(il11t(A))), wht!re i ¢ j, i, j = I, 2, 

(4) (i, J)-.w:mi-preopen [161 if there exists an (i. j)-prcopen set U such that Cc Ac 
iCI( U), where i t j, i, J '-- l, 2. 
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The family of (i, ))-semi-open (resp. (,, J)-preopcn, (i, j)-rt-opt.:n (i, j)-scmi-preopen) sets 

of (X, .T1, t 2) is denoted by (i. j)SO(X) (resp (i, j)PO(X), (l, ;)a(X). (i, j)SPO(X)). 

Remark 4.1. Let (X, t 1, 1 2) be a b1topological space and A a subset of X Then (i, j)SO(X), 

(i. /)PO~-~- (i, j)a(.\') and (i, j)SPO( . .\') are all m-structures on X. I lcnce, if mlJ ,a.: (i, j)SO(X) 

(resp. (1, J)PO(X), (i, j)a(.\'), (i, J)SPO(X)), then we have 

(I) "'v•Cl(A) = {i. J)-sCl(A) [20] (resp. (i, j)-pCl(A) [16], (i, JHxCl(A) [24), (i, j)­
spCl(A) [ 16]), 

(2) m,,-lnt(A) = (i, j)-slnt(A) (resp. (i, j)-plnt(A), (i, j)-alnt(A), (i, j)-splnt(A)). 

Remark 4.2. Let (X, t 1, t 2) be a bi topological space. 

(a) Let 1111 = (i. j)SO(X) (resp. (i, j)a(X)). Then, by Lemma 3.1 we obtain the result 
established in Theorem 13 of [20] and Theorem 1.13 of [19] (resp. Theorem 3.6 of [24)). 

(b) Let m,1 = (i, j)SO(X) (resp. (i, j)PO(X), (i, j)a(X), (i, j)SPO(X)). Then, by Lemma 

3.2 we obtain the result established in Theorem 1.15 of[19] (resp. Theorem 3.5 of[16], Theorem 
3.5 of [24], Theorem 3.6 of [I 6]). 

Remark 4.3. Let (X, 't 1, 't2) be a bitopological space. 

(a) It follows from Theorem 2 of [20] (resp. Theorem 4.2 of [15] or theorem 3,2 of 

(16]. Theorem 3.2 of [24], Theorem 3.2 of [16] that (i, j)SO(X) (resp. (i, j)PO(X), (i, j)a(X), 

(i. j)SPO(X)) is an m-structure on X satisfying property ~-

(b) Let mlJ = (i, J)SO(X) (resp. (i, j)PO(X), (i, j)a(X), (i, j)SPO(X)). Then, by Lemma 

3.3 we obtain the result established in Theorem 1.13 of [19] (resp. Theorem 3.5 of [16], Theorem 

3.6 of (24], Theorem 3.6 of [16]). 

5. m-OPEN MULTIFUNCTIONS IN BITOPOLOGICAL SPACES 

Definition 5.1. A function/: (X, 't 1, 't2) ➔ (Y, a 1, a 2) is said to be (i,J)-semi-open [6] (resp. 

(i. j)-preopen [ 15], (i, j)-a-open [ 17], (i, J)-semi-preopen) if for each 'ttopen set U of X, I{ U) 

is (i, /)-semi-open (resp. (i, j)-preopen, (i, })-a-open, (i, J)-semi-prepen) in f. 

Definition 5.2. A multifunction F: (X, 't 1, 't2) ➔ (Y, al' a 2) is said to be (i, })-almost open 

(or (i. 1)-preopen) [8] if for each U E t;, F(U) is (i, j)-preopen. 

Remark 5.1. (a) By Remark 4.3(a), (i, J)SO(Y), (i, J)PO(Y), (i, J)a(Y) and (i, j)SPO(Y) are 

all m-structures on f satisfying property (g'). Therefore, a function f : (X, 1 1, -c2) ➔ 

(Y, <1 1
, <1

2
) is (i.j)-semi-open (resp. (i,j)-preopen, (i,j)-a-open, (i,j)-semi-preopen) if and only 

if f: (X, t;) ➔ (Y, m;) is m-open, where mlJ = (i, j)SO(Y) (resp. (i. j)PO(Y), (i, J)a(Y), 

(i. j)SPO(Y)). 
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(h) A nrnJtifunction F : (X, 't 1, 12) > (Y, <1" o2) is (i, .iJ•prCclpcn if F : (X, 't;) ➔ 
(Y. mlJ) is nH)pcn. "here m,

1 
(i, j)PO(Y). 

Definition 5 .. 3. Let ( l", n 1, cr ,2) be a bitopological space and m iJ = m( <1 1; 02) an m-structure 
on }: A multifunction P: (X, -tr, t 2) ---➔ (Y, o1, cr2) is said lo he (i, j}m•open at x E X if 
F : (X: 'i1) ➔ (J: m,} is m-opcn at x E X. 

Remark 5.2. (a),\ multifunction F: (X, t 1• -r2) -t (Y, <1 1, <12} is (i, J1-m•open at x e X if 
for each t,-open set V containing .r, there exists VE 111IJ containing F(x) such that V c F(U). 

(b) By Remark 3.3, it follows from that a multifunction F : (X, t 11 t 2) ~ (f. cr 1, cr2) 

'is (i,j)-m-open, where m = 111(0 1, cr,,) has property 11, if and only if F(U) is miopen for ever1 
y -

i topen set U of X. 

(c) If r~ (X. 1 1, t 2) ➔ (Y, cr 1, cr2) is a function and F: (X, 'ti' t 2) ➔ (Y cr1, o2) is 
a multifunction. then by Definiton 5.3 we obtain Definitions 5.1 and 5.2. 

By Definition 5.3 and Theorems 3.1-3.5, we obtain the following theorems. 

Theorem 5.1. Let (Y, cr 1, cr2) be a bitopological space and miJ = m(ai, cr2) an m-strucmre 
on Y -u•ith property 11. Then a multifunction F : (X, 't 1, -r2) ➔ ( Y, cr 1, cr2) is (i, j)-m-open at 
x E X if and only if x e F+(m

1
(Int(F(U))) for every 1.rope11 set U containing x. 

Theorem 5.2. ut ( Y. cr 1' cr2) be a bitopological space and mil = m( a 1• cr2) an m-strocture 
Qn I" with property 11. Then a multifunction F : (X, 't 1, 't2) ➔ (Y, cr I' cr2) is (i, j)-m-cpen if 
and only if F(U) is ml}-open for every 'tropen set U of X 

Theorem 5.3. Let ( Y, a 1• cr2) be a bitopological space and mij = m( cr 1, cr~) an m-srructure 
on Ywith property "e. For a multifunction F: (X, 'ti, 't2) ➔ (Y. cr 1, cr2). thefol/owdng properties 
are equivalent: 

(1) F is (i, j)-m-open at x e X,· 

(2) If x E ilnl(A) for A G iZ'(X), then x E F~(m!l-lnt~l(A)); 

(3) If x E llnt(Ft(/J)) for IJ E il'(}'), then x E F • tmiflnttB)}; 

(4) Jf x E F'"(mt.i-Cl(IJ)) /11r 11 E ~Y), then .\" e il'l(F (8)). 

Tateorem 5.4. Let (Y. o,, o2) be a hitopolugical .,,wee and m, . = m(o P Ch) an m...srn1cnrre 
on Ywithproper1y Z', For a mulli.fimctirm F: (X. 11, 't 2) ➔ (l', cr~, (1

2
), 1Jw.{0Jiowi11g proper/its 

are equivalem: 

( l) F is (i, j)•m .. npen; 

(2) F(ilnt(A) c "',/lnt(F(A)) for ,·i'etJ' subset A ,if x;, 
(3) ilnt(F' (/J)) c:: F 1(m

9
-lnt(ll)} fi,r ,H'('ry subset B of}:· 



MlNlMAL STRUCTURES. m•OPf:N MtJI;rrFUNCTIONS AND BIHJPOLOGICAL SPACES 9 

(2) f{ilnt(A) c 111
1
/lnt(F(A)) lor eve,y .vubl'l!I A of X; 

(3) ilnt(F◄· (}l)) c fi'+(m,
1
-lnt(JJ)) for eve,y subset IJ <!f Y.· 

(4) If r(m!I-Cl(B)) c iCf(J?-(8)) for every suhset B of Y. 

For a function F: (.\', t 1, t 2) ➔ (Y, cr 1, o-2), we denote 

n,~ c: {x E X : F is not (i, J)-m-open at x}, 

then b~ Definition 5.3 and Theorem 3.5 we obtain the following theorem: 

Theorem S.S. For a mult{f,mcrion F : (X, t) ➔ (Y, my), where ml/ = m( a 1, cr2) an m-structure 

on Y with property S, the Joi/owing properties hold: 

Di(F) = ULer, {U. - F+(m1(Int(F(U)))} 

= u 4e P(,\') {ilnt(A) - P(mi(Int(F(A)))} 

= UBeP(,Y){ilnt(P(B)) - P(mij-Int(B))} 

= UBeP(y){r(mij-Cl(B)) - iCl(r(B))}. 

6. NEW FORMS OF MODIFICATIONS OF OPEN MULTIFUNCTIONS 

There are many modifications of open sets in topological spaces. In order to define some new 

modifications of open sets in a bitopological space, let recall 0-open sets and &-open sets due 

to Velicko {33]. Let (X, 't) be a topological space. A point x E X is called a 8-cluster (resp. 

&-cluster) point of a subset A of X if Cl(V) n A =I= 0 (resp. Int(Cl(V)) n A =I= 0) for every 

open set V containing x. The set of all 0-cluster (resp. 6-cluster) points of A is called the 

0-closure (resp. o-closure) of A and is denoted by Cl0(A) (resp. CI6(A)). If A = Cl
8
(A) (resp. 

A = Cl0(A)), then A is said to be 0-closed (resp. o-closed) [33]. The complement of a 0-cJose<l 

{resp. 3-closed) set is said to be 0-open (resp. o-open). The union of all 0-open (resp. &-open) 

sets contained in A is called the 0-interior (resp. f>-interior) of A and is denoted b) lnt
8
(.'t) 

(resp. Int0(A)). 

Definition 6.1. A subset A of a bitopological space ( Y. a 1, er~) is said to be 

(I) (i, j)-o-se1111-ope11 [27 I if A c- ;Cl(il11t0(A)), ,vhere z ':I: j. i. j = 1. 2. 

{2) (i, j)-fJ-preopen f28 J if A c /lnt(iCl6(A)), wher~ i ¢ ;, i. j = t, 2, 

(3) (i, j)·O•.'i(!llli-preopen (simply {i, j)-O·S/HJfJt'II) if then~ exists an (i, j}-6-pr~pen set 
U :mch that Uc A c iCl(lJ), where i "# i, i, j L 1. 

Definition 6.2. A subset A of a bitopological space ( Y, cr" cr_-:) is said to be 

(I) (/, J).0-semi-open if A r.: ;<;l(ilnt0(A)), where i "I:. ;, i, j = L 2, 

~ (2) (i, j)-0-preopen it' A c: ilnt(iCl0(A)), where i ,.;; ;, i, j = I, 2. 
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Let (Y. cr
1
• crJ) b~ a bitopologicnl space. The family of (i, j)-~-s~mi .. opcn (resp. {i, j)-

6-preopcn. ( ,. j}~O•sp-opcn. (i. J)·0-scmi-opcn, (i, j)-0-prcopcn, ( t, .I )-0-.,p-open) sets of 
(Y, cr

1
, cr

2
) is denoted hy (1. j)6SO(}') (resp. (i,j)6PO(Y), (i, j)oSPO( Y), (I, j)OSO( Y), (i.J)0PO(Y), 

(i, j)0SPO{l')). 

Remark 6.1. Let (r, o
1
, o

2
) he a bitopological space. The family (i, J)oSO(Y), (!, jJoPO(YJ, 

(i. J)oSPO(J). (i, j)0SO(Y), (i, j)0PO(Y) and (i, j)OSPO(Y) are all m-structures with property 

'8. 

For a multifunction F: (X, ti, 't2) ➔ (Y, cr 1, o2), we can define many new types of 

(i, j}-m--opcn multifunctions. For example, in case ml} = (i, j)oSO(Y) (resp. (i. J)OPO(Y), 

(i, j~SPO(Y). (i, J)SSO(Y), (i, j)SPO(Y), (i, j)0SPO(Y)) we can define new types of (z, 1}m­

open multifunctions as follows: 

Definition 6.3. A multifunction F : (X, 't 1' 't2) ➔ ( Y, o 1, cr2) is said to be (i, j)-o-semi-open 
(resp. (i, j)-0-preopen, (i, J)-'6-sp-open) if F : (X, 't;) ➔ (Y, m;) is (i, J}m-open and m/J = 
(i. j;6SO{J') (resp. (iJ)'oPO(Y), (i, j)oSPO(Y)). 

Definition 6.4. A multifunction F: (X, 't 1, t 2) ➔ (Y, er 1, o 2) is said to be (i, 1)-8-semi-open 
(resp. (ij)-0-preopen, (i, j)-8-sp-open) if F : (X, 't;) ➔ (Y, m;) is (i, j)-m-open and m/J = 
(i, j)SSO(f) (resp. (i, j)8PO(Y), (i, j)SSPO(Y)). 

Conclusion. We can apply the characterizations established in Sections 5 to the multifunctions 

defined in Definitions 6.3 and 6.4 and also to multifunctions defined by using any m-structure 
mij = m(cr1, cr2) with property 'B determined by cr 1 and cr2 in a bitopoJogical space 

(Y, a,, a2). 
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