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MINIMAL STRUCTURES, m-OPEN MULTIF’UNCTION‘B
AND BITOPOLOGICAL SPACES

Takasut NOIRI anp Vaveriv POPA

ABSTRACT : By using m-open multifunctions from a topological space into an m-space, we establish
 the unified theory for several weak forms of open multifunctions between bitopological spaces.

~ Key words and pharases : m-structure, m-open set, (i, j)-m-open multifunction, bitopological space.
~ AMS Subject Classification : 54405, 54C10, 54C60, S4ESS.

1. INTRODUCTION

: ‘m sets, preopen sets, o-open sets and P-open sets play an important role in the
- vesearching of generalizations of open functions and open multifunctions. By using these sets.
~several authors introduced and studied various types of modifications of open functions and
1 multifunctions in topological spaces and bitopological spaces. Maheshwari and Prasad*

- 20 .d Bose [6] introduced the concepts of semi-open sets and semi-open functions in

itopological spaces.. Jelic’ [12], [14], Kar and Bhattacharyya [15] and Khedr et al. [16)

: and studied the concepts of preopen sets and preopen functions in bitopological

es. The notions of a-open sets and a-open functions in bitopological spaces were studied

331. {24] and [17]. Some forms of open multifunctions are studied in [5], [7] and [8]

by, in [,”] nnd [31] the present authors introduced the notions of minimal structures,

kﬁsm paper, we introduce the notion of an m-open multifunctions from a
cal space into an m-space and establish the unified theory for several weak forms of
netions between bitopological spaces. We obtain some characterizations of m-open
and characterize the set of all points at which a multifunction is not m-open.
SOme new modifmtiann of open multifunctions between bitopological spaces
{ and mm
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mw;.mw '



bint(4)).

2 TAKASHI NOIRI AND VALERIU POPA

Definition 2.1. Let (X, 1) be a topological space. A subset A4 of X is said to be 0-0pen [25)
(resp. semi-open (18], preopen [22], B-open [1] or semi-preopen [3], b-open [4] or y-opey, [t
if 4 c Int(Cl(Int(4))) (resp. 4 ¢ Cl(Int(4)), 4 © Int(Cl(4)), 4 < ClInt(Ciayy,
4 < In(Cl(A))UCI(Int(4))).

The family of all semi-open (resp. preopen, a-open, B-open, semi-preopen, h-open) sets
in X is denoted by SO(X) (resp. PO(X), o(X), B(X), SPO(X), BO(X)).
Definition 2.2. The complement of a semi-open (resp. preopen, a-open, B-open, semi-preopen,

b-open) set is said to be semi-closed [9] (resp. preclosed [10], v-closed [23], B-closed [1]
semi-preclosed (3], b-closed [4]).

]

Definition 2.3. The intersection of all semi-closed (resp. preclosed, a-closed, B-closed, semi-
preclosed, b-closed) sets of X containing 4 is called the semi-closure [9] (resp. pre-closure
[10]. a-closm (23], B-closure [2], semi-preclosure [3], b-closure [4]) of A and is denoted by
sCI(4) (resp. pCI(4), aClI(A), 4CI(4), spCI(4), bCI(A).

Definition 2.4. The union of all semi-open (resp. prepen, c-open, B-open, semi-preopen, b-open)

sets of X contained in 4 is called the semi-interior (resp. preinterior, o-interior, B-interior, sem:-
preinterior, b-interior) of A and is denoted by sInt(4) (resp. pInt(4), alnt(4), BInt(4). spint(4),

Throught the present paper, (X, 1) and (¥, ©) (brieﬁy X and Y) always denote topological
spaces and F : X — Y (resp. f: X — Y) presents a multivalued (resp. single valued) function.
For 2 multifunction F : X — ¥ we shall denote the upper and lower inverse of a subset B
of a space ¥ by F*(B) and F(B), respectively, that is

Fi(B)={xe X: Fx)cB}and F(B)={xe X: Fx) n B # p}.
Definition 2.5. A function f: (X, 7) > (¥, 1) is said to be open at a point x € X if for each
open set U containing x, there exists an open set ¥ of Y containing Ax) such that VA U).
If 1 is open at each point x € X, then f is said to be open.
Remark 2.1. A function /: (X, 1) = (¥, 0) is open if and only if AU) is open for each open
set U of X.
Definition 2.6. function /: (X, 1) = (¥, 0) is said to be semi-open [26] (resp. preopen [22],
a-open (23], B-open [1]) if AU) is semi-open (resp. preopen, a-open, B-open) for each open
set U of X.
Definition 2.7. A multifunction F : (X, 1) = (¥, 0) is said to be open [5] (resp. semi-open
[29], preopen (8], a-open [7), P-open) if F(U) is open (resp. semi-open, preopen, a-open,

- P-open) for each open set U of X,
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3. MINIMAL STRUCTURES AND m-OPEN MULTIFUNCITONS

Definition 3.1. A subfamily m y Oof the power set 2(X) of a nonempty set X is called a minimal
Structure (or briefly m-structure) [30], [31] on X if @ € my and X € m,

By (X, my) (or briefly (X, m)), we denote a nonempty set X with a minimal structure
my on X and call it an m-space. Each member of m is said to be my-open (or briefly m-open)
and the complement of an m,-open set is said to be m-closed (or briefly m-closed).

Definition 3.2. Let X be a nonempty set and m, an m-structure on X. For a subset 4 of X,
the m,~closure of A and the my-interior of A are defined in [21] as follows:

() myCA)=n{F:4Ac FE X-F e my,
(2) myInt(d) = V{U : Uc 4, U e my}.

Remark 3.1. Let (X 1) be a topological space and 4 be a subset of X. If m, = 1 (resp. SO(X),
PO(X), a(X), B(X), BO(X)), then we have

(a) mCl(4) = Cl(4) (resp. sCl(4), pCl(4), aCl(4, BCI(4), bCI(4)),
(b) my-Int(4) = Int(4) (resp. sInt(4), pInt(4), alnt(4, BInt(4), bint(4)).

Lemma 3.1. (Maki et al. [21]). Let (X, my) be an m-space. For subsets A and B of X, the
following properties hold:

(1) myClX — 4) = X — my-Int(4) and my-Int(X — 4) = X — my-Cl(4),

(2) If (X - A) € my, then my-Cl(4) = 4 and if A € my, then mInt(4) = 4,
(3) myCl0) = 0, m-Cl(X) = X, my-Int(0) = 0 and m-Int(X) = X,

(4) If A c B, then my-Cl(4) € m\-CI(B) and my-Int(4) c m-lnt(B),

(5) 4 c myClA) and my-Int(4) C 4,

(6) myClimy-ClA)) = my-Cl(A) and my-Int(my-Int(4)) = my-Int(4).

Lemma 3.2. (Popa and Noiri [30]). Let (X, my) be an m-space and A a subset of X. Then
x € myCUA) if and only ifUNA# 0 for every U € my containing x.

Definition 3.3. A minimal structure my on a nonempty set X' is said to have property & [21]
if the union of any family of subsets belonging to my belongs to m,.

. Definition 3.3. (Popa and Noiri [32]). Let (X, my) be an m-space and m, satisfy property &.
 Then for a subset A of X, the following properties hold:

) e my fand oy i mln() = 4,
() Ais mclosed if and only if myCI(4) = 4,
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(3) my-Int(A) € my and my-Cl(A) is my-closed

Remark 3.2. Let (X, 1) be a topological space and my = SO(X) (resp. PO(X), a(X) gy,
BO(X)), then m, satisfies property &.

Definition 3.4. Let (Y.my) be an m-space.

(1) A multifunction F : (X, 1) = (¥, m,) is said to be m-open at x & X if for each
open set U containing x, there exists ¥ € m, containing F(x) such that ¥ < F(U). If F is
m-open at each point x € X, then F is said to be m-open.

(2) A function /: (X 1) = (¥, my) is said to be m-open at x € X if for each open set
U containing x, there exists ¥ € m, containing f{x) such that ¥ c AU). If /is m-open at each
point x € X then [ is said to be m-open.

Theorem 3.1. 4 multifunction F : (X, 1) > (¥, my) is m-open at x € X, where m, has property
2. if and only if for each open set U containing, x, x € F"(my-Int(F(U))).

Proof. Necessity. Let U be an open set containing x. Then, there exists ¥ € m, such that F(x)
< ¥V c FU) and hence F(x) c my-Int(F(U)). Therefore, we obtain that x € F"(m,-Int(F(1})}.

Sufficiency. Suppose that x € F'(my-Int(F(U))) for each open set U containing x. Then
Hx) € myInt(F(U)). Set V = m-Int(F(U)), then by Lemma 3.3 V'€ my and F(x) c ¥ c F(1).
Therefore, F is m-open at x.

Theorem 3.2. A multifunction F : (X, 1) = (¥, my) is m-open, where (Y,m,) has property B.

if and only if F(U) is my-open for each open set U of X.

Proof. Necessity. Let U be an open set of X and x € U. Since F is m-open at x € X, by
~ Theorem 3.1 we have F(x) ¢ my-Int(F(U)) and by Lemma 3.1 F(U) = m-Int(F(1)). By Lemma
e 3,3, F(U) is my-open.

. Sufficiency. Let x € X and U be an open set of X containing x. Then we have F(x)

. :—jﬁ ﬂwam,mm) Therefore x € F*(my-In((F(U)). By Theorem 3.1, F is m-open at arbitrary
point x € X.

emark 3.3. () If F: (X, 1) = (¥, 0) is a multifunciton and m, = © (resp. SO(Y), PO(Y),
). B(1)), we obtain Definition 2.7, that s, the definition of an open (resp. semi-open, preopen.

en, f§-ope )m:duﬁmcﬁm, where SO(Y) (resp. PO(Y), a(Y), B(Y)) is the family of all semi-
20 B-open) sets of ¥,

_- (& t) = (¥, 0) is a function and my, = g (resp. SO(Y), PO(Y), (1), BN
jon 2.6,

- Fora m:dtﬁm:m F (X, 1) = (Y, my), where my, has property 8. the following
aq:t.‘widm
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(1) F is m-open ai x;
(2) If x € In(4) for A € PX), then x € F* (- Int(F(A)));
) x & WF'(B) for B e 2(Y), then x € F* (my-Int(B));
(@) If x € F(myp-CU(B)) for B &€ AY), then x € CIF(B)).
Proof. (1) = @) : Let 4 ¢ PX) and x e Int(A4). Then, there exists an open set [/ such that

x € Uc 4 and hence F(x) ¢ F(U) ¢ F(A). Since F is m-open at x, by Theorem 3.1 and
Lemma 3.1, we obtain r e F'(my-Int(F(U))) © F'(my-Int(F(A)))).

~ @ => 3 :Llet Be &Y)and x € Int (F*(B)). Then, x e F*(m-Int(F(F*(B)))) =
F(my-In(BY).

(G)= (@) :Let Be &) and x ¢ CI(F(B)). Then x € X - CIF(B)) = Int(X -
F1B)) = m(F(¥ - B)). By (3) we have x € F'(m,Int(Y-B)) = X — F (myCU(B)). Hence,
xt F{(m,-CKB)). Therefore, if x € F~(m-CI(B)), then x € CI(F (B)).

(4) = (1) : Let U be any open set of X containing x and B = ¥ — F(U)). Since
CUF(B)) = CUF(Y —-F(U))) = CUX - F*(FU))) c X~ Intl(U) = X - Uand x € U we obtain
that x ¢ CI(F(B)). By (4), we have x ¢ F(myC(B)) = F(myCl(Y - F())) = X -
Fi{mInt(F(U))). Therefore, x ¢ F* (my-Int(F(U))). By Theorem 3.1, F is m-open at x.

- Theorem 3.4. For a multifunciton F - (X, ) — (¥, my), where my has property 8, the following

Fnt(A)) © my-Int(F(4)) for any subset A of X;
<8y urw)) < F'(my-Int(B)) for any subset B of Y:
“4) F‘(ﬂrCKB)) < CI(F(B)) for any subset B of Y.

{2) : Let 4 be any subset of X and x € Int(4). Since F is m-open at each x
oren 3,}&;}: my-In(F(4). Hence F(Int(4)) < my-Int(F(A)).

Let B be any subset of Y. By (2), we have F(Int(F" (B))) < my-Int(F(F(B)))

t B be any subset of Y. By (3), we have X - CIF(B)) = Int(X ~ F(B)
“myIn(Y ~ B)) = X = F (m-CI(B)), Hence, F-(m-CI(B)) ¢ CI(F(B)).

any open set of X and B = ¥ ~ F(U). By (4), we have
F(U)). Now, F-(my-CI(Y ~ F(U))) = F(Y - myInt(F(1)))
we have CICF (¥ = F(UY) = CIQY ~ FI(EUN) © X - )
CA(L)) and hence F(U) © my-Int (F(1)). By
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Remark 3.4, Let F : (X, 1) = (Y, 6) be a multifunction and my = SO(X). Then b
3.4, we obtain the result established in Lemma 5.2 of [29].

For a multifunction F : (X, 0) = (¥, my), we denote

DYF) = {x € X : F is not m-open at x}.

y T her)rem

Theorem 3.5. For a multifunction F : (X 1) => (X my), where my, has property B, the following
properties hold:

DUAF) = Uy U = F(my-Int(FU)))}
= Uge o Int(4) = FH(my-Int(F(4)))}

= Uge p UINUFY(B)) = F¥(my-Int(B)))

= Uge iy {F(my-CI(B) — CI(F-(B))}.

Proof. Let x € DYF). Then, by Theorem 3.1, there exists an open set U, containing x such

that x F"(m,,-[nt(F(Uo))). Hence x € U;n (X\ F’(my-lnt(F(Uo)))) = Uy \ F(my-Int(F( Up))
C UyerdU = F(my-In(FU))}.

Conversely, let x e Uye AU - FF (m-Int(F(U)))}. Then there exists U, € 1 such that
x € Uy - F'(my-Int(F(U,))). Therefore, by Theorem 3.1 x e DY(F).

For the second equation, let x € D°(F). Then, by
such that x € Int(4,) and x ¢ F* (my-Int(F(4,))). There
C U g pioy (INH(A) — F*(m,-Int(F(A)))).

Conversely, x € U ,_ 2o {Int(4) — F'(my-Int(F(4)))}. Then there exists 4, € P(X) such
that x € Int(4,) — F'(m,-Int(F(4,))). By Theorem 3.3, x ¢ D).

The other equations are similarly proved.

Theorem 3.3, there exists 4 1 € AX)
fore, x € Int(4,) — F* (m-Int(F(4,)))

4. MINIMAL STRUCTURES AND BITOPOLOGICAL SPACES

Throughout the present paper, (X, 1,, 1,) and (Y, 0}, 0,) denote bitopological spaces. For a
subset A of X, the closure of A and the interior of 4 with respect to 1, are denoted by iCl(4)
and ilni(A), respectively, for i = 1, 2. First, we shall recall some definitions of weak forms

of open sets in a bitopological space,
Definition 4.1. A subset 4 of a bitopological space (X, T, T,) is said to be
| : sy O J)-semi-open (20] if 4 < jCI(/Int(4)), where i # i wl 2
D G Jrpreopen [12] if 4 ¢ IMGCIA)), where i JEji= 1.2
) G, )ro-open (13] if 4 & AnGCIGiN(A))), where § # j, i j = |

() (G, f)semi-preopen [16] if there exists
v CULD, where 1w /, |, =12

LR

an (i, j)-preopen set U such that U c 4
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The family of (i, j)-semi-open (resp. (i, j)-preopen, (i, j)-t-open (i, J)-semi-preopen) sets
of (X, 1,, 1,) is denoted by (i, /)SO(X) (resp. (4, HPO(X), (i, ))oX), (i, )HSPO(X)).
Remark 4.1. Let (X, T;» T,) be a bitopological space and A a subset of X. Then (i, /)SO(X),

(i, HPOX), (i, HoX) and (7, /)SPO(X) are all m-structures on X. Hence, if m = (i, YSO(X)
(resp. (i. HPO(X), (i, HoX), (i, /)SPO(X)), then we have

(1) m-Cl4) = (i, j)-sCl(d) [20] (resp. (i, j)-pCIA) [16), (i, jy-aCl(A) [24], (i, j)-
spCl(A) [16)),

(2) m”.—lnt(A) = (i, j)-sInt(4) (resp. (i, j)-pInt(4), (i, j)-adnt(4), (i, j)-spInt(4)).
Remark 4.2. Let (X, T\, T,) be a bitopological space.

(@) Let m; = (i, )SO(X) (resp. (i, /)a(X)). Then, by Lemma 3.1 we obtain the result
established in Theorem 13 of [20] and Theorem 1.13 of [19] (resp. Theorem 3.6 of [24]).

(b) Let m, = (i, HSO(X) (resp. (i, HPO(X), (i, oUX), (i, /)SPO(X)). Then, by Lemma
3.2 we obtain the result established in Theorem 1.15 of [19] (resp. Theorem 3.5 of [16], Theorem
5 3.5 of [24], Theorem 3.6 of [16]).

Remark 4.3. Let (X, 1,, 1,) be a bitopological space.

(a) It follows from Theorem 2 of [20] (resp. Theorem 4.2 of [15] or theorem 3.2 of
[16], Theorem 3.2 of [24], Theorem 3.2 of [16] that (i, j)SO(X) (resp. (i, ))PO(X), (i, j)a(X),
(i, ))SPO(X)) is an m-structure on X satisfying property &.

(b) Let m; = (i, ))SO(X) (resp. (i, )HPO(X), (i, ))a(X), (i, j)SPO(X)). Then, by Lemma
3.3 we obtain the result established in Theorem 1.13 of [19] (resp. Theorem 3.5 of [16], Theorem
3.6 of [24], Theorem 3.6 of [16]).

- 5. m-OPEN MULTIFUNCTIONS IN BITOPOLOGICAL SPACES

~ Definition 5.1. A function f: (X 1, T,) = (¥, 0}, 6,) is said to be (i, j)-semi-open [6] (resp.
(i, j)-preopen [15], (i, j)-a-open [17], (i, j)-semi-preopen) if for each 1-open set U of X, AU)
_is (i, j)-semi-open (resp. (i, j)-preopen, (i, j)-0-open, (i, j)-semi-prepen) in Y.

Definition 5.2. A multifunction F : (X, 1), T,) = (¥, 0}, 0,) is said to be (i, j)-almost open
(ar (i, j)-preopen) [8] if for each U € 1, F(U) is (i, j)-preopen.

 Remark 5.1. (a) By Remark 4.3(a), (i, )SO(Y), (i, H)PO(Y), (i, j)e(Y) and (i, HSPO(Y) are

' f‘a;l] m»structures on Y satisfying property (#). Therefore, a function 7 : (X, 1,, 1,) =
£ .,;g,, 0,) is (i, j)-semi-open (resp. (i, J)-preopen, (i, j)-c-open, (i, j)-semi-preopen) if and only
ig (X, 1;) - (Y my) is m-open, where my = (i, )SO(Y) (resp. (i. HPO(Y), (i Hod),
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(b) A multifunction F : (X, 1,, T,) = (¥, 0, 0y) is (i, j)-preopen if F . (x £
& A mg) is m-open, where m = (i, HPO(Y).
Definition 5.3. Let (Y, 0, 0,) be a bitopological space and m, = m(G,. G,) an m-structyre
on Y. A multifunction F : (X, 1,, 1,) = (¥, 0,, 0,) is said to be (i, j)-m-open at x ¢ x ¢
F:(Xt)-> m,) is m-open at x € X.
Remark 5.2. (a) A multifunction ¥ : (X, Ty, Ty) = (Y, 0, 6,) is (i jym-open at x e X if
for each 1 -open set U containing x, there exists V ¢ m, containing /(x) such that V < F(1)),
(b) By Remark 3.3, it follows from that a multifunction ¥ : (X, 1, 1)) = (¥, 0,, 0,)

is (4, j)-m-open, where m, = m(0,, 0,) has property &, if and only if F(U) is m-open for every
T-open set U of X.

© If7: (X 1, T,) = (¥, 0,, 0,) is a function and F : (X, 1, 1,) = (¥, 6,, 5,) is
a multifunction, then by Definiton 5.3 we obtain Definitions 5.1 and 5.2.

By Definition 5.3 and Theorems 3.1-3.5, we obtain the following theorems.

Theorem 5.1. Let (Y, 0,, 0,) be a bitopological space and my = m(G,, O,) an m-structure
on Y with property 8. Then a multifunction F : (X, Tys Tp) = (Y Oy, 0,) is (i j)m-open at
x€ X ifand only if x € F* (m-Int(F(U))) for every 1-open set U containing x.

Theorem 5.2. Let (Y. 6, 0,) be a bitopological space and m; = m(G,, 6,) an m-structure
on Y with property 8. Then a multifunction F : (X, 1, 1,) - (Y 0|, 0,) is (i. j-m-open if
and only if F(U) is m-open for every T-open set U of X.

Theorem 5.3. Let (¥, 0,, 6,) be a bitopological space and my; = m(C\, G,) an m-siructure
 on Y with property . For a multifunction F : (X, 1,,1,) - (Y, 01, G,), the following properties
 are equivalent:
: ) Fls (i, jy-m-open at x € X;
okl Ifx € iloUd) for A € P(X), then x € F (m-Int(F(d4));
B Uxe MmF(B) for Be PY), then x & F'(mln(B));
(43 Ifxe F(mCUB)) for B € P(Y), then x & iC(F (B)).

em 5.4, Let (Y, 0y, 0,) be a bitopological space and my; = m(0,, 0,) an m-structure
: erly € For a multifunction F : (X, 1}, 1,) = (Y, 0,. 0,), the following properties

‘6:5 ‘mgwinf(ﬂd)) for every subset A of X;
e P (ma*lm(ﬂ)) for every subset B of ¥;
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(2) Filnt(A) © my-Int(/(A4)) for every subset A of X:
3) in(F'(B) c F! (m,-In(B)) for every subset B of Y
@ I F(mCi(B)) c fCI(F‘TB)) for every subset B of Y.
For a f‘unction F:(X 1, 1) = (¥, 6, 0,), we denote
={x e X:Fis not (i, j-m-open at x},
then by Deﬁnmon 5.3 and Theorem 3.5 we obtain the following theorem:
Theorem 5.5. For a multifunction F : (X, 1) = (¥, my), where m; = m(G, G,) an m-structure
on Y with property &, the following properties hold:
DY(F) = Yyer (U~ F(mInt(FU)))}
= Uy pp {nt(A4) — F*(m,-Int(F(A)))}
= Upe pp {II(FH(B)) — F¥(m,-Int(B))}
= Upe oy {F (m,~CI(B)) ~ iCI(F(B))}.

6. NEW FORMS OF MODIFICATIONS OF OPEN MULTIFUNCTIONS

There are many modifications of open sets in topological spaces. In order to define some new
modifications of open sets in a bitopological space, let recall 6-open sets and 3-open sets due
to Velicko [33]. Let (X, 7) be a topological space. A point x € X is called a 8-cluster (resp.
d-cluster) point of a subset 4 of X if CI(V) n 4 # @ (resp. Int(CI()) N 4 # @) for every
open set ¥V containing x. The set of all 6-cluster (resp. d-cluster) points of A is called the
B-closure (resp. 8-closure) of A and is denoted by Cly(4) (resp. Clg(4)). If 4 = Cly(4) (resp.
4 = Cig(4)). then A is said to be 0-closed (resp. d-closed) [33]. The complement of a 8-closed
(resp. 6-closed) set is said to be 0-open (resp. 8-open). The union of all 8-open (resp. 3-open)
sets contained in A is called the O-interior (resp. d-interior) of A and is denoted by Inty(4)

(resp. Inty(4)).

‘ Definition 6.1. A subset 4 of a bitopological space (¥, 0, g,) is said to be

(1) (@, j)-b-semi-open [27] if A < jCl(ilntg(A)), where i # j, i j =1, 2,
(2) (i j)-B-preopen 28] if A ¢ NMGCly()), where i # j, i, j = 1, 2,

3) (i, j)-8-semi-preopen (simply (i, /)-8-sp-open) if there exists an (i, j)-d-preopen set
U such that U ¢ 4 c jCU), where i # j, i, j = 1, 2.

ion 6.2. A subset 4 of a bitopological space (¥, o), 0,) is said to be
(i, jyB-semi-open if A < jCI(ilnty(4)), where i # j, i, j = 1, 2,
(i, j)-e-pm»pen if A < iIny(jCly(4)), where i = j, i, j =1, 2,
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Let (¥, 0,, 0,) be a bitopological space. The family of (/, j}§-8§mi-0pen (resp. (i, j).
d-preopen, (i, j)-O-sp-open, (i, /)-0-semi-open, (i, j)-8-preopen, (i, .ll)'9--YP"OPC'n). sets of
(¥, 0,, 0,) is denoted by (i, )SO(Y) (resp. (i, JBPO(Y), (i, HOSPO(Y), (i, YOSO(Y), (i, YOPO( ),
(i, HBSPO(Y)).
Remark 6.1. Let (Y, 6,, 6,) be a bitopological space. The family (i, ))OSO(Y), (i, /)6PO(1),
@ DASPO(Y), (i, )HOSO(Y), (i, /YBPO(Y) and (i, j)BSPO(Y) are all m-structures with property
8.
For a multifunction F : (X, 1, 7,) = (¥, 0}, 0,), we can define many new types of
(i, jy-m-open multifunctions. For example, in case my = (i, NOSO(Y) (resp. (i, )YOPO(Y),
(i, ISPO(Y), (i, )BSO(Y), (i, )BPO(Y), (i, /)PSPO(Y)) we can define new types of (i, j)-m-
open multifunctions as follows:

Definition 6.3. A multifunction F : (X, 1), 7,) - (¥, 0}, 0,) is said to be (i, j)-6-semi-open

(vesp. (i, j)-8-preopen, (i, j)-8-sp-open) if F : (X, 1) = (¥, my) is (i, j)-m-open and m, =
(i, J)BSO(Y) (resp. (i,)SPO(Y), (i, j)OSPO(Y)).

Definition 6.4. A multifunction F : (X 1, 1,) = (¥, 6,, 6,) is said to be (i, j)-8-semi-open
(resp. (ij)-8-preopen, (i, j)-9-sp-open) if F : (X, 1) — (7, m,.j) is (i, j)-m-open and m,; =
(& )BSO(Y) (resp. (i )BPO(Y), (i, j)BSPO(T)).

Conclusion. We can apply the characterizations established in Sections 5 to the multifunctions
defined in Definitions 6.3 and 6.4 and also to multifunctions defined by using any m-structure
m, = m(0,, 0,) with property & determined by o, and o, in a bitopological space
(7’ 0, 0,).

REFERENCES

1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, B-open sets and B-continuous
mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90.

~ 2. M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashin, B-closure and B-interior, J. Fac.
Ed. Ain Shans Univ. 10 (1986), 235-245,

3. D. Andrijevic’, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.
4. D. Andrijevic’, On b-open sets, Mat. Vesnik 48 (1996), 59-64.

kOt Béanzaru, Topologies on spaces of subsets and multivalued mappings, Mathematical
~ Monographs, University of Timigoara, 1997, .

6. 8. Bose, Semi-open sets, semi-continuity and semi-open mappings in bitopological spaces, Bull.
Calcutta Math. Soc. 73 (1981), 237-246.

7. ). Cao and 1. L. Reilly, o-continuous and o-irresotute multifunctions, Math. Bohemica 121
 (1996), 415424,



MINIMAL STRUCTURES, m-OPEN MULTIFUNCTIONS AND BITOPOLOGICAL SPACES 11

8. J.Cao and 1. L. Reilly, On pairwise almost continuous multifunctions and closed graph, Indian
J. Math. 38 (1996), 1-17.

9. S. G Crossley and S. K. Hildeband, Semi-closure, Texas J. Sci. 22 (1971), 99-112.

10. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math.
Soc. Sci. Math. R. S. Roumanie 27(75) (1983), 311-315.

11. A. A. El-Attik, A Study of Type of Mappings in Topological Spaces, M. Sci. Thesis, Tanta
Univ. Egypt, 1997.

12. M. Jeli¢, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990),
25-29.

13. M. Jeli¢, Feebly p-continuous mappings, Suppl. Rend. Circ. Mat. Palermo (2) 24 (1990),
387-395.

14. M. Jeli¢, On some mappings of bitopological spaces, Suppl. Rend. Circ. Mat. Palermo (2)
29 (1992), 483-491.

15. A. Kar and P. Bhattacharyya, Bitopological preopen sets, precontinuity and preopen mappings,
Indian J. Math. 34 (1992), 295-309.

16. F. H. Khedr, S. M. Al-Areefi and T. Noiri, Precontinuity and semi-precontinuity in bitopological
spaces, Indian J. Pure Appl. Math. 23 (1992), 625-633.

17. S. Sampath Kumar, Pairwise a-open, o-closed and o-irresolute functions in bitopological
spaces, Bull. Inst. Math. Acad. Sinica, 21 (1993), 59-72.

18. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly
70 (1963), 36-41.

19. T. Lipski, Quasicontinuous multivalued maps in bitopological spaces, Slupskie Prace Mat.
Przyrodnicze Slupsk 7 (1988), 3-31.

~ 20. S.N.Maheshwari and R. Prasad, Semiopen sets and semi continuous functions in bitopological
 spaces, Math. Notae 26 (1977/78), 29-37.

. H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure
- Appl. Math. Sci. 49 (1999), 17-29.

: A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak
precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47-53.

_S. Mashhour, I. A. Hasanein and S. N. El-Deeb, o-continuous and o-open mappings, Acta
Math. Hungar. 41 (1983), 213-218.

Nasef and T. Noiri, Feebly open sets and feeble continuity in bitopological spaces, An.
igoara Ser. Mat.-Inform. 36 (1998), 79-88.

ad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.




12 TAKASHI NOIRI AND VALERIU POPA
26. T. Noiri and B. Ahmad, 4 note on semi-open functions, Math. Sem. Notes Kobe Univ. 10 (1987
437-441.
27. N. Palaniappan and S, Pinou Missier, 8-semi-open sets in bitopological spaces, J. Indian Acad.
Math. 25 (2003), 193-207.
28. N. Palaniappan and S. Pinou Missier, 8-preopen sets in bitopological spaces, J. Indian Acad.
Math. 25 (2003), 287-295.
29. V. Popa, Y. Kucuk and T. Noiri, On upper and lower preirresolute multifunctions, Pure Appl.
Math. Sci, 44 (1997), 5-16.
30. V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. “Dunarea de Jos™ Galati, Ser.
Mat. Fiz. Mec. Teor. (2) 18(23) (2000), 31-41.
31. V. Popaand T. Noiri, On the definiitons of some generalized forms of continuity under minimal
conditions, Mem, Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 9-18.
32. V. Popaand T. Noiri, A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo
(2) 51 (2002). 439-464.
33. N. V. Velicko. H-closed topological spaces. Amer. Math. Soc. Transl. 78 (1968). 103-108.
Takashi NOIRI Valeriu POPA
2949-1 shiokita-Cho, Hinagu, Department of Mathematics
Yatsushiro-Shi. Kumamoto-ken. Univeristy of Bacau
869-5142 Japan 600 114 Bacau, Romania

e-mail: tL.noiri@nifty.com e-mail: vpopa@ub.ro





{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

