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A NOTE ON IDEALS OF C(X) 
SWAPAN KUMAR GHOSH 

ABSTRACT : For a topological space X, let P be an ideal of closed sub-sets of X and C(N be 

the ideal of C(A) of all functions f such that the support off lies in 2. In this paper, we investigate 

the ideals of C(X) which are of the form C() for some ideal Pof closed sub-sets of X. We characterize 

P-spaces and almost P-spaces in terms of the ideals of the fom C). Examples and counterexamples 

are given. 
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1. INTRODUCTION 

Throughout, X will stand for a completely regular Hausdorff topological space, C(X) denotes the 

ring of all real-valued continuous functions on X. For an fe C(X), Z() = fx E X: fx) = 0} 

stands for the zero-set of f and clX - ZO) stands for the support of f. Let P be a family 

of closed subsets of X satisfying the following two conditions: (i) If 4, Be P then 

AUBE D. (ii) If 4 e P and BCA with B closed in X then Be Pi.e. P is an ideal of 

closed sets in X. In 2010, we initiated the ring C() for each ideal P of closed subsets of 

X as Cz()= fe C(X) : clX- Zð)) e P}, [1]. It is clear that C(X) is a z-ideal (possibly 

improper) of C(X, an ideal I of C(X) is called a z-ideal if fe I, Z() = Zg) and ge C(X) 

imply that ge I. It is also clear that if P denotes the family of all compact subsets of X 

then C) coincides with C(X) where CX) = fe C(X): cl{(X- Zf)) is compact}. Again 

If p denotes the family of all closed subsets of X then Cz() coincides with C(X). 

Lemma 1.1. Cz(X) = C(X if and only if X e 2. 

Proof. In fact, Cz(X) = CX) if and only if Cz() contains units of C(X) if and only if 

Xe P. 
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Notations 1.2. (l) We denote the set of all ideals of closed sets in X by sX) and the farnik 

of all ideals of CX) which are of the form CX) for some Pe ZA) by Jax 

It is clear that 2(X) is closed with respect to arbitrary intersection. 

(2) Suppose that Iis an ideal of CN. Consider the family of all members of 20 

coniaining {cl,{X -Z): fe I. This family is nonempty since it contains the ideal of al! 

closed subsets of X. Since Q() is closed with respect to arbitary interesection, there exists 
a smaliest member of QH containing {cl,4X - Z)): fe I} which we denote by p (). 

Note 1.3. It is obvious that fclAX- ZO):fe I is closed with respect to finite union. Thus 
if A E P) then As clX- Z) for some fe I. 

We now prove the following two lemmas. 

Lemma 14. I¡n, is closed with respect to arbitrary intersection. 

Proof. Let Jo = aur Then J, {C): Pe 2 for some lo c S2n Since Q) s 
closed with respect to arbitrary itersection, P, =n{P:2E Slo E 2X). Also ^J, = 

Lemma 1.5. Suppose I is an ideal of C(X). Then CX) is the smallest member of Jor 
containing I. 

Proof. Obviously, Ie CenX). Let I c C) here P 20). Then {cl,(X - Z)): 
fe Is P. Also PI) is the smallest member of 2() containing {cl{X - Z)): fe I 
Hence PI) = P and therefore Can)c Cz). 

Coroliary l.6. Suppose I is an ideal of C(X). Then I Jon if and onty if I= CarlX) 
As usual BX denotes the Stone-Cech compactification of X. The maximal ideals of C(X 

are given by the family {M:pe B where M = {f E C(X): pe clayZ)}. Also to 
each p e BX, the set 0 = !fe CX): claZ) is a neighbourhood of p} is an ideal of C(X} 11 is to be noted that MP and 0P are z-ideals for all pe BX. If p E X then we wTite M 
and O, instead of M and P respectively. Thus M, = {fe C(X):pe Z} and Op /E CX) : Z) is a neighbourhood ofp}. We now state the following theorem from Gillman Jerison text, [7.12, 3]. 

n{C):PE ln} Cz). Since P, ¬ S(X), we see that n% ¬ Jon 
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Theorem 1.7. Letp BX. Then fe QP if and only if there is a neighbourhood V of p in 
BN such that Pa Xe Z). 

We now prove the following theorem. 
Theorem 1.8. For cach p e BX, OE Jon 
Proof. Let pe BX and P = I. Consider the ideal Coa(X) and suppose fe CznX). Then 
cl{X -Z)) E PU) and so cl(X -Z() S clX- Z(g)) for some ge I= 0 (Note 1.3). 

Hence int,Z(g) int,Z(). Now since g e OP, by Theorem 1.7, we find an open set V in 
BX containing p such that VoXc Z(g). Since VnXis open in X, we have Vo X int yZg). 
Thus V n X int ,Z(). So by Theorem 1.7, fe P = I. Hence Cen) cI and therefore 

(1) Cpe aM, 

A subset Z of a space X is called a zero-set if Z = Z() for some fe Cn, A subset 
A of a space X is called regular closed if A -clyinty4. Let us now prove the following theorems. 

Theorem 1.9. Let A c Xbe such that cly4 and clyint yA are both zero-sets in X. Then the 
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=^pe inty chyap 

(3) clA is regular closed. 

Proof. () ’ (2) Follows from Theorem 1.8 and Lemma 1.4. 

(2) ’ (3) : Put clyA = B and choose two functions f g e C(X) such that Z()= B and 

Zg) = clyint,B. Then intyZU) = intB intyZ(g). Also int Z(g) c int,Z) since 
Zg) Z). Therefore int,Z) = int,Zg) and hence cl{X - Z)) = clX - Z(g). Now 

fenoe 4M, since A Z). Also by assumption, nne aM, = Cz(X) for some Pe 2(). Thus 

fe CzX). So cl{X- Z0) e P and hence g e C() since cl(X - Zg)) = clX- Z). 

I = Cpn(). Thus P = IE Ioi 

following conditions are equivalent. 

Now it is obvious that pe M =pec,a Mp. So e. aMy =e aM, Thus ge e b 
Consequently, B Zg) and therefore BC cl,intyB. Hence B = cl,int B. Thus B = cl,A is 

regular closed. 
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(3) ’ (): 

peint cy aOp: 
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Obviously, 
Suppose now that 

Z). Since cly4 is regular 
e M, S ^peint y cly Ap: 

fe ̂ peint y cdy 4Op. Hence int 

closed. cl4 G ZN. Thus A Z) and consequently, f¬ pe aM Hence pe M, 
cly A c Z) and thus clyint,clyA 

from Theorem 1.10. 

Corollary 1.10. Suppose (p} is a zero-set in a space X. Then M, ¬ Jon if and only if p 

is an isolated point of X. 

Proof. We note that cly{p} = (p}. Also clyint ,cly p} = {p} or 0 according as p is an isolated 
point or not. Thus if (p} is a zero-set then cly(p} and clyintycly(p} both are zero-sets. Taking 
A = {p}, from Theorem 1.9 we now can say that M, e on if and only if clyip} is regulr 
closed i.e. if and only if clykp} = cl,int,clyp} i.e. if and only if p is an isolated point 
of X. 

Example 1.11. The Corollary 1.10 becomes false if {p} is not a zero-set in X. Take X = 

[0, o,], where @, is the first uncountable ordinal. Each fe C() is eventually constant on 
a tail (a, Q] for some a < o,, hence {o,} is not a zero-set in X. But �{o,} is a P-point 
of Y", (50.1, (3]] and thus Mon = Oo Consequently, by Theorem 1.8, Mo E Jon although, 

), is not an isolated point of X. 

Example 1.12. Suppose A = (0, 1), B= [0, 1], C- [0, 1] ̂ Q and D = [0, 1] {2). Then 
cp4. clB, cCare regular closed but clD is not. So from Theorem 1.9 it follows that , M. pe 

2. P-SPACE, ALMOST P-SPACE, F-SPACE 

A space X is called a P-space if M, 0, for each p ¬ X. Equivalently, X is a P-space if 
every zero-set in X is open. In 2010, we characterized P-spaces in the following theorem, 
[Theorem 5.4, [1]]. 

Theorem 2.1. A space X is a P-space if and only if every ideal of C(X) is of the form CX) 
for some suitablce family P of subsets of X with PE R). 

Ore BM ze M, E aa) but pe b, e Ja(ay Again if pe R then M, e Joe as follows 
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From Theorem 2.1 we can say that if X is a P-space then each prime ideal of C() 

is in oa Interestingly, the converse is also true. In fact, if X is not a P-space then 
M. 0, for some p¬ X. Hence there exists a prime ideal P in C(X) containing O, which 

is not a z-ideal, (4I-5, 6, [3]). Thus Pe Jorn since each member of Jon is a z-deal. Hence 

we have the following theorem. 

Theorem 2.2. For a space X, the following are equivalent. 
(1) X is a P-space. 

(2) Every ideal of C(X) is in Jon: 

(3) Every prime ideal of C(X) is in Jon 

A collection F of zero-sets in a space X is called a z-filter on X if (1) 0e F, (2) F 
is closed with respect to finite interesection and (3), Z e F and Z, is a zero-set in X with 
Z, 2 Z imply that Z, ¬ F, [2.2, [3]]. Recall that if I is an ideal of C(X) then the family Z 
= (Z(): fe I} is a z-filter on X, (2.3 (a), [3]]. A space X is called an almost P-space if 
the interior of every nonempty zero-set in X is nonempty. It is well-known that a space X is 

an almost P-space if and only if every zero-set in X is regular closed, [Proposition 1.1, [4]]. 
In the following theorem we characterize almost P-spaces. 

Theoremn 2.3. For a space X, the following are equivalent. 

(1) X is an almost P-space. 

(2) /e Jon for cach z-ideal I of C(X). 
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(3) Me Jon for each p e BX. 

(4) M, ¬ Jon for each p e X. 

Proof. (I) (2): Let I be a z-ideal of C(X). Suppose fe Cpul). Then clX -Z()) e 
P) and therefore cly(X -Z)) c clX- Zg) for some g e 1 Hence int,Zág)c int,2) 
and so cl yint,Ag) s clyint yZ). Since X is an almost P-space, every zero-set in X is regular 
Closed and thus Zg) c Z). Also g e I shows that Z(g) e Z[U. Since Z is z-filter on X 

We now have Z) e ZN. Thus Z) = Z(h) for some he I. Hence fE I since I is a z-ideal. 

Thus Czu(X) c I and so /= Cpu). 
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(2) > (3): Trivial since cvery maximal ideal in CX) is a z-ideal. 

(3) ’ (4): Trivial. 

(4) > (): Suppose (1 ) is false. Then there is a nonempty zero-set, say Z in X such 

that inty= 0. Choose p e Z and suppose Z = Z where fe C(). Then 7E M Thus 

I = M,. Now cl,X -Z) = X- intyZ = X since int,Z= a 

Cp n() = C(). thus M, = ICpn). From Corollary 1.6 i cl{ - Z)) E PD) where 

Hence Xe P). There fore 
now follows that M, = le 
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Jo 

We note that if MP E Io for each pe BX- X then X need not be an almnost P-space 

Consider the following example. 

Example 2.4. Let u be a free ultrafilter on N. Supp0se E = NUfo} where o N. Define 

a topology on E as follows : all points on N are isolated and the neighbourhoods of ¡ are 

So is not an almost P-space. Now choose p e BE � £ and suppose MP = I. If MP Can) 
then Cn() = C(E) since MP is maximal. Therefore int,Z() = for some fe I= M. Now 

fE MP shows that p e clayZ() and therefore Z() is not compact. So Z() contains points 

of N. Since all point of N are isolated, it now follows that int,Z) 0, a contradiction. 

An abstract ring R is called an Fring if each finitely generated ideal in R is principa. 
A space X is called an F-space if CA) is an F-ring. Equivalently, X is an F-space if and only 
if for each fe CX there exists ke C() such that f= k|f|, [14.25, [3]). In 2014, we 
characterized F-spaces in terms of the ideals C(X), [Theorem 2.1, (21]. We now prove the 
following theoremn. 

Theorem 2.5. Consider the following conditions for a space X. 

) Every finitely generated ideal in C() is in Jon 

(3) X is an F-space. 

(2) Every principal ideal in C(X) is in Jon: 

Then 1l) and (2) are equivalent and each of them implies (3). 

Hence (4) is false. 

the sets UU{o} for UE U, 4M, [31]. In 2, the set {o} is a zero-set. Also int,{o} = 0. 

Hence MP = Cpo2). Thus MPE Jo for eachpe B - I. 



Proof. (1) ’ (2) : Trivial. 

(2) ’ (3) : Choose fe C(X). By (2), ( ) = C(X) for some Pe 20). Hence (| /|) 
is a z-ideal. Now ZQ |) = Z() shows that fe (f). Hence thcre exists ke C(X) such that 
f= kf]. Hence X is an F-space. 
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(2) ’(): If (2) is true then from (2) ’ (3) above we see that X is an F-space. Thus 

every finitely generated ideal in C(X) is principal. Hence the proof follows. 

It is to be noted that in Theorem 2.5, (3) need not imply (2) or (1). We consider the 

following example. 

Example 2.6. Consider the space described in Example 2.4. It is an 
Since {a) is a zero-set in E, we can select an fe C(2) such that Z() = {o}. If possible now 
let I = ()¬ Jo2 Then I = Cp(E) for some Pe 2(2). Therefore cl,(E - ZO) E P. Hence 
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cl,(- {o}) e P. Since o is not isolated in , cl(E- {o})=E. Thus Ee Pand consequently, 
I= Ca(E) = C(2), which is not possible since fis not a unit in C(E). Therefore I = () & 
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