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A NOTE ON IDEALS OF (C(X)
SWAPAN KUMAR GHOSH

ABSTRACT : For a topological space X, let 2 be an ideal of closed sub-sets of X and Cx(X) be
the ideal of C(X) of all functions f such that the support of f lies in 2. In this paper, we investigate
the ideals of C(.Y) which are of the form C(X) for some ideal 2 of closed sub-sets of X. We characterize

P-spaces and almost P-spaces in terms of the ideals of the form C4(X). Examples and counterexamples

are given.
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1. INTRODUCTION

Throughout, X will stand for a completely regular Hausdorff topological space, C(X) denotes the
ring of all real-valued continuous functions on X. For an f e C(X), Z(f) = {x e X: fix) =0}
) stands for the support of 7. Let 2 be a family
. (i) If 4, B € 2 then

stands for the zero-set of f and c/ (X — Z(f)
of closed subsets of X satisfying the following two conditions

AU Be P (i)If4e Pand BC 4 with B closed in X then B € P i.e. P is an ideal of

closed sets in X, In 2010, we initiated the ring Cx(
Xas Cp(X) = {fe CX): cldX~ Z(f)) € P}, [1]. It is clear that C5(X) is a z-ideal (possibly
improper) of C(X), an ideal I of C(X) is called a sideal if fe I, Z(f) = Z(g) and g € C(X)
imply that g € 1. It is also clear that if 2 denotes the family of all compact subsets of X
then C5(X) coincides with C(X) where Cp(X) = {fe C(X): cl(X- Z(f)) is compact}. Again
if 2 denotes the family of all closed subsets of X then C(X) coincides with C(X).

X) for each ideal 2 of closed subsets of

Lemma 1.1. C4(X) = C(X) if and only if X € P.

nd only if Cx(X) contains units of C(X) if and only if

Proof. In fact, Cp(X) = C(X) if a
Xe P.
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N sets in A Y X) and the famif,
otations 1.2. (1) We denote the set of all ideals of closed in X by £ )] ik
. m C P e UX) by g4,

of all ideals of C(X) which are of the fo 2AX) for some e S4A4) X

It is clear that Q(X) is closed with respect to arbitrary intersection.

(2) Suppose that / is an ideal of C(X). Consider the family of all members of Q)
coniaining {c/ (X — Z(f)) : f< I}. This family is nonempty since 1t comams‘the deal of 'a‘“
closed subsets of X. Since Q(X) is closed with respect to arbitary interesection, there exists
a smaliest member of Q(X) containing {c/ (X — Z(f)) : f € I; which we denote by 2 (J)
Note 1.3. It is obvious that {cl AX - Z(f)) : f< [} is closed withr respect to finite union. Thus
if A € ) then 4 cl AX — Zf)) for some fe I

We now prove the following two lemmas.

Lemma 1.4. T is closed with respect to arbitrary intersection.

Proof. Let j, Jory Then 75 = {CHX) : P € Qg for some Q, c Q(X). Since Q(Y) &
closed with respect to arbitrary intersection, Py =niP . Pe Q, € QX). Also NJy =
NICHX) P e Q) = Cpy(X). Since P, € Q(X). we see that NI € Joox,

Lemma 1.5. Suppose / is an ideal of C(X). Then C,,,,,(X) 1s the smallest member of Tous
conmtamning /.

Proof. Obviously, /7 ¢ C,l,}(X). Let I ¢ CHX) where 2 = Q(X). Then {cl (X - Z()) -
f= I, — P Also &) is the smallest member of Q(X) containing {clAX-2Z(pH): f= I
Hence 2(J) — 2 and therefore Cop ,’(X) c CHX).

Corollary 1.6. Suppose 7 is an ideal of C(X). Then ] ¢ Jacx, if and only if 1 = C,, (1

As usual B denotes the Stone-Cech compactification of X. The maximal ideals of C(X
are given by the family {A# - p € BX} where M = {fe C(X) - p < CIBXZ(/)}. Also for
cach p e X the set (o = ife C(X): clgyZ(f) is a neighbourhood of p} is an ideal of C(X)
112 10 be noted that AP and P are z-ideals for all p € BX. If p € X then we write M.
and O, instead of M’ and (o respectively. Thus M,=1{fe C(X):pe Z(f} and O;°

e C 2 is a neighbourhood of p}. We now state the following theorem from Gillmar
Jerison text, [7.12, [3]].

n
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Theorem L.7. Let p € BX. Then fe O if and only if there is a neighbourhood ¥ of p in
B\ such that V' X < Z().

We now prove the following theorem.

Theorem 1.8. For each p e BX, OF ¢ Ja:

Proof. Let p € BX and OP = I Consider the ideal Cap((X) and suppose f € Cp(X). Then
LY = Z(N) € PI) and so el (X ~ Z(f)) © cl (X — Z(g)) for some g € [ = OP (Note 1.3).
Hence int,Z(g) < int\Z(f). Now since g € OP, by Theorem 1.7, we find an open set V in
BX containing p such that ¥ ~ X ¢ Z(g). Since ¥'n X is open in X, we have V' N X C int, Z(g).
Thus V' X ¢ int, Z(f). So by Theorem 1.7, fe OF = I. Hence Cp((X) < I and therefore
1= Cpp(X). Thus O = T e g,

A subset Z of a space X is called a zero-set if Z = Z(f) for some f € C(X). A subset

4 of a space X is called regular closed if 4 = clyintyA. Let us now prove the following theorems.

Theorem 1.9. Let 4 ¢ X be such that clyA and clyint, A are both zero-sets in X. Then the

following conditions are equivalent.
(1 ﬂpeAMp = mpeintxc/xAOp-

(2) NyeaM, € Joy

pe A

(3) cl,A is regular closed.

Proof. (1) = (2) Follows from Theorem 1.8 and Lemma 1.4.

(2) = (3) : Put ¢/, A = B and choose two functions £, g € C(X) such that Z(f) = B and
Ag) = clint B. Then int N = intyB C int Z(g). Also intyZ(g) < int Z(f) since
2zg) < Zf). Therefore int, Z(f) = int Z(g) and hence c/ (X — Z(f)) = cl (X - Z(g). Now
fe r, M, since 4 < Z(f). Also by assumption, N, /M, = Cp(X) for some 2 € Q(X). Thus
[e ChX). So cl X Z(f)) € P and hence g € Cp(X) since cf (X = Z(g)) = ¢l (X - ZN).
Now it is obvious that 0 M = OpeciA M, . So NpeaMy, = Dpe M, Thus g € N, M,
Consequently, B 1 Z(g) and therefore B < clyinty B. Hence B = clyint B. Thus B = cl\A4 is

regular closed.
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140, Suppose  now thy
3 = () - Obviously, npeAMp c NpeintyclyA~p

ol A c Z(f) and thus clyintycly A S Z(f). Since clyA is regular
PUECRS

Hence N _ M

fe Npeinty ety 40p. Hence int
pe A p =

closed. ¢/ < Z(f). Thus 4 C Z(#) and consequently, f € OpesMy

Mpeintycly4Yp-

: if and only i
Corollary 1.10. Suppose {p} is a zero-set in a space X. Then M, € Jo( if and only if p

is an isolated point of X.

Proof. We note that c/,{p} = {p}. Also clyint,cl,{p} = {p} or ¢ according as p is an isolated
point or not. Thus if {p} is a zero-set then ¢/, {p} and clyintycl{p} both are zero-sets. Taking
4 = {p}, from Theorem 1.9 we now can say that Mp € Jaw if and only if cl,{p} is regulr
closed i.e. if and only if ¢/ {p} = clyint,cl,{p} ie. if and only if p is an isolated point
of X.

Example 1.11. The Corollary 1.10 becomes false if {p} is not a zero-set in X. Take X =
[0. ©,], where ®, is the first uncountable ordinal. Each f € C(X) is eventually constant on
a tail [a, ;] for some o < ®,, hence {®,} is not a zero-set in X. But “{w,} is a P-point
of X7, [50.1, [3]] and thus My, = O, . Consequently, by Theorem 1.8, M, e Ja(x) although,
®, is not an isolated point of X.

Example 1.12. Suppose 4 = (0, 1), B=[0, 1], C=[0, 1] n Q and D = [0, 1] U {2}. Then
clyA. cl B, cl C are regular closed but ¢/, D is not. So from Theorem 1.9 it follows that Npe M,
e BMp, Mpe ch € Jom) but N e DMp € Jor) Again if p € R then Mp ¢ Jo (r) S follows

from Theorem 1.10.

2. P-SPACE, ALMOST P-SPACE, F-SPACE

A space X s called a P-space if M, = O, for each p € X. Equivalently, X is a P-space if
cvery zero-set in X is open. In 2010, we characterized P-spaces in the following theorem,
[Theorem 5.4, [1]].

Theorem 2.1. A space X is a P-space if and only if every ideal of C(X) is of the form Cp(X)
for some suitable family 2 of subsets of X with 2 e Q(X).
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From Theorem 2.1 we can say that if X is a P-space then each prime ideal of C(X)
is in T Interestingly, the converse is also true. In fact, if X is not a P-space then
M, # 0, for some p € X. Hence there exists a prime ideal P in C(X) containing O, which

is not a z-ideal, [41-5, 6, [3]]. Thus P ¢ Ja since each member of Jawn is a z-deal. Hence
we have the following theorem.

Theorem 2.2. For a space X, the following are equivalent.
(1) X 1s a P-space.
(2) Every ideal of C(X) is in Ty
(3) Every prime ideal of C(X) is in Jawx

A collection F of zero-sets in a space X is called a z-filter on X if (1) ¢ ¢ F, 2) F
is closed with respect to finite interesection and (3), Z € ¥ and Z, is a zero-set in X with
Z,2 Z imply that Z, € ¥, [2.2, [3]]. Recall that if is an ideal of C(X) then the family Z[/]
={Z(f) : f € I} is a z-filter on X, [2.3 (a), [3]]. A space X is called an almost P-space if
the interior of every nonempty zero-set in X is nonempty. It is well-known that a space X is
an almost P-space if and only if every zero-set in X is regular closed, [Proposition 1.1, [4]].

In the following theorem we characterize almost P-spaces.
Theorem 2.3. For a space X, the following are equivalent.
(1) X is an almost P-space.
(2) I € Jaw for each z-ideal I of C(X).
(3) M ¢ T for each p € BX.
(4) M, € Joy, for each p € X.

Proof. (1) = (2) : Let / be a z-ideal of C(X). Suppose f € Cg(X). Then /(X - Z(f)) €
P(l) and therefore cl X - Z(f) < cl (X - 2(8) for some g € I Hence int\Z(g) < intyZ(f)
and so clyint, Z(g) < cl jint Z(f). Since X is an almost P-space, every zero-set in X is regular
closed and thus Z(g) < Z(f). Also g € I shows that Z(g) € Z[I]. Since Z[[] is z-filter on X
we now have Z(f) € Z[I). Thus Z(f) = Z(h) for some he I Hence fe Isince Iis a z-ideal.

Thus Cp (X) € 1 and so | = Cp ().
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« ’ . -~ 'l
. : USRS g C(X) is a z ideal.
(2) -» (3) @ Irivial since every maximal ideal in (X)

(3) = (4) : Trivial.
. . Z i :
@) = (1) : Suppose (1) o false. Then there is a nonempty Zero set, sayf In X sy
. . Then fe M,
that int,Z = ¢. Choose p € Z and suppose Z = Z(f) where [ € ) ' P Thus
=X - intyZ = X since intyZ = 4

Ay X~ Z2(h) e P where [ = Mp. Now cl X - Z(N) Coroll

C i
Hence X € p(,') Therefore C'P(I)(X) = C(X) thus Mp =/ 2 CP([)(X) From oroliary 16 1t
now follows that M, = I & Joy, Hence (4) is false.

We note that if MP € Jgy, for each p € X — X then X need not be an almost P-space.

Consider the following example.

Example 2.4. Let U be a free ultrafilter on N. Suppose Z = N U {o} where 6 & N. Define

a topology on I as follows : all points on N are isolated and the neighbourhoods of & are

the sets U U {c} for U e U [4M, [3]]. In Z, the set {O} is a zero-set. Also inty{0} = .

So I is not an almost P-space. Now choose p € BZ — X and suppose ©MP =1 1f MP i Cap(2)

then Cp,(X) = C(Z) since MP is maximal. Therefore intsZ(f) = 0 for some fe I = MP. Now
f e MP shows that p € clBy_Z(f) and therefore Z(f) is not compact. So Z(f) contains points
of N. Since all point of N are isolated, it now follows that intsZ(f) # @, a contradiction.

Hence MP = Cp(X). Thus M € Jg, for each p € B — Z.

An abstract ring R is called an F-ring if each finitely generated ideal in R is principal.
A space X is called an F-space if C(X) is an F-ring. Equivalently, X is an F-space if and only
if for each [ e C(X) there exists k € C(X) such that f = k| f|, [14.25, [3]]. In 2014, we
characterized F-spaces in terms of the ideals Cp(X), [Theorem 2.1, [2]]. We now prove the

following theorem.

Theorem 2.5. Consider the following conditions for a space X.
(1) Fvery finitely generated ideal in C(X) is in Jq .
(2) Lvery principal ideal in C(X) is in Jq .
(3) X i1s an J-space,

Ihen £1) and (2) are equivalent and each of them implies (3).
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Proof. (1) = (2) : Trivial.

(2) = (3) : Choose f& C(X). By (2), (| /]) = C4(X) for some 2 € LX), Hence (| /1)
is a z-ideal. Now Z(| f]) = Z(f) shows that f ¢ (| /1). Hence there exists k € C(X) such that
f= k7| Hence X is an F-space.

(2) = (1) : If (2) is true then from (2) = (3) above we sce that X is an F-space. Thus

every finitely generated ideal in C(X) is principal. Hence the proof follows.

It is to be noted that in Theorem 2.5, (3) need not imply (2) or (1). We consider the

following example.

Example 2.6. Consider the space X described in Example 2.4. It is an F-space, [4M-8, [3]].
Since {0} is a zero-set in X, we can select an fe C(Z) such that Z(f) = {o}. If possible now
let I=(f) e Jac) Then I = Cx(Z) for some 2 € Q(Z). Therefore cl (X — Z(f)) € P. Hence
cly(X - {o}) € 2. Since 0 is not isolated in I, c/y(Z - {0}) = Z. Thus € P and consequently,
[ = Cx(Z) = C(Z), which is not possible since fis not a unit in C(Z). Therefore / = (f) ¢

Jo)-
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