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Abstract

We obtain the differential equations for characterizing Frenet curves, Legendre
curves and magnetic curves in three dimensional f -Kenmotsu manifolds. Also we
prove that under certain assumptions a Frenet curve whose curvature and torsion are
given is Legendre curve.
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1 Introduction

A nice notion of classical differential geometry of curves is that of curves of constant slope,
also called cylindrical helix. This is a curve in the Euclidean space E3 for which the tangent
vector field has a constant angle with a fixed direction called the axis. The second name
corresponds to the fact that there exist a cylinder on which the curves moves in such a way
that it cuts each ruling at a constant angle. The classical characterization of these curves is
the Bertrand-Lancret-de Saint Venant Theorem([4]): The curve γ in E3 is of constant slope
if and only if the ratio of the torsion τ and the curvature κ is constant. More precisely,
for a cylindrical helix we have the constant ratio cos θ

| sin θ| = τ
κ

and then, inspired by the title
of [4], in paper [2] the authors define the Lancret invariant as Lancret(γ) = cos θ

| sin θ| . By
computing κ and τ in terms of θ we get the result above and therefore the expression of
Lancret invariant in the 3-dimensional Euclidean geometry is:

Lancret(γ) = τ

κ
, (1)

An interesting generalization of this class of curves is that slant curve in almost contact
metric geometry. This concept was introduced in [8] with the constant angle θ between
the tangent and the Reeb vector field. The particular case of θ = π

2 (orθ = 3π
2 ) is very

important since we recover the Legendre curves of [2]
In [9], Cabrerizo, Fernandez and Gomez introduced a geometric approach to the study of
magnetic fields on three dimensional Sasakian manifolds. A curve γ is called magnetic curve
in 3-dimensional f -Kenmotsu manifolds if ∇γ̇ γ̇ = ϕγ̇. A magnetic curve is the trajectory
of magnetic fields. Geodesics on a manifold are curves which do not experience any kind
of forces where the magnetic curves experience due to magnetic fields. If the magnetic
field disappears, the magnetic curves become geodesics. In this way a magnetic curve is a
generalization of a geodesic.
In the study of f -Kenmotsu manifolds, Legendre curves play a important role. Legendre
curves on contact manifolds have been studied by C. Baikoussis and D. E. Blair in the paper
[2]. Belkhelfa et al [6] have investigated Legendre curve in Riemannian and Lorentzian
manifolds and many others such as ([27], [28]).
Let M be a 3-dimensional Riemannian manifold. Let γ : I → M, I being an interval,
be a curve in M which is parameterized by arc length, and let ∇γ̇ denote the covariant
differentiation along γ with respect to the Levi-Civita connection on M . It is said that γ

is a Frenet curve if one of the following three cases holds:

• γ is of osculating order 1, i.e,∇V1V1 = 0 (geodesic), V1 = γ̇. Here, . denotes differen-
tiation with respect to the arc parameter.

• γ is of osculating order 2, i.e., there exist two orthonormal vector fields V1(= γ̇), V2

and a non-negative functions κ (curvature) along γ such that ∇V1V1 = κV2, ∇V1V2 =
−κV1.

• γ is of osculating order 3, i.e., there exist three orthonormal vectors V1(= γ̇), V2, V3
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and two non-negative functions κ(curvature) and τ(torsion) along γ such that

∇V1V1 = κV1, (2)

∇V1V2 = −κV1 + τV3, (3)

∇V1V3 = −τV2. (4)

With respect to the Levi-Civita connection, a Frenet curve of osculating order 3 for which
k is a positive constant and τ = 0 is called a circle in M ; a Frenet curve of osculating
order 3 is called a helix in M if κ and τ both are positive constants and the curve is called
a generalized helix if κ

τ
is a constant.

2 Preliminaries

Let M be an almost contact manifold i.e, M is a connected (2n + 1)-dimensional differen-
tiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) [3]. As usually
denote by Φ the fundamental 2-form of M , Φ(X, Y ) = g(X, ϕY ), X, Y ∈ χ(M), χ(M)
being the Lie algebra of differentiable vector fields on M .

• normal if the almost complex structure defined on the the product manifold M ×R
is integrable (equivalently [ϕ,ϕ] +2dη ⊗ ξ = 0),

• almost cosymplectic if dη = 0 and dΦ = 0, For further use, we recall the following
definitions [3], [10], [26]. The manifold M and its structure (ϕ, ξ, η, g) is said to be:

• cosymplectic if it is normal and almost cosymplectic(equivalently,∇ϕ = 0, ∇ being
covariant differentiation with respect to the Levi-Civita connection)

The manifold M is called locally conformal cosymplectic (respectively, almost cosymplectic)
if M has an open covering Ut endowed with differentiable functions σt : Ut → R such that
over each Ut the almost contact metric structure (ϕt, ξt, ηt, gt) defined by

ϕt = ϕ, ξt = eσtξ, ηt = e−σtη, gt = e−2σtg (5)

is cosymplectic (respectively, almost cosymplectic)
Olszak and Rosca [23] studied normal locally conformal almost cosymplectic manifold.They
gave a geometric interpretation of f -Kenmotsu manifolds and studied some curvature prop-
erties. Among others they proved that a Ricci symmetric f -Kenmotsu manifold is an Ein-
stein manifold.
By an f -Kenmotsu manifolds we mean an almost contact metric manifold which is normal
and locally conformal almost cosymplectic.
Let M be a real (2n + 1)-dimensional differentiable manifold endowed with an almost con-
tact structure (ϕ, ξ, η, g) satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1 (6)
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ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ) (7)

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) (8)

for any vector fields X, Y ∈ χ(M) where I is the identity of the tangent bundle TM, ϕ is
a tensor field of (1, 1)-type, η is a 1-form, ξ is a vector field and g is a metric tensor field.
We say that (M, ϕ, ξ, η, g) is an f -Kenmotsu manifold if the covariant differentiation of ϕ

satisfies [24]:

(∇Xϕ)(Y ) = f(g(ϕX, Y )ξ − η(Y )ϕX), (9)

where f ∈ C∞(M) such that df ∧ η = 0. If f = α = constant ̸= 0, then the manifold
is a α-Kenmotsu manifold [14]. 1-Kenmotsu manifold is a Kenmotsu manifold ([15], [25]).
If f = 0, then the manifold is cosymplectic [14]. An f -Kenmotsu manifold is said to be
regular if f 2 + f ′ ̸= 0, where f ′ = ξf .
For an f -Kenmotsu manifold from (2.2) it follows that

∇Xξ = f(X − η(X)ξ) (10)

The condition df ∧ η = 0 holds if dim M ≥ 5. In general this does not hold if dimM = 3
[23].
In a 3-dimensional Riemannian manifold, we always have

R(X, Y )Z = g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X − S(X, Z)Y
−r

2g(Y, Z)X − g(X, Z)Y (11)

In a 3-dimensional f -Kenmotsu manifold, we have [23]

R(X, Y )Z = (r

2 + 2f 2 + 2f ′)(g(Y, Z)X − g(X, Z)Y )

−(r

2 + 3f 2 + 3f ′){η(X)(g(Y, Z)ξ − g(ξ, Z)Y )
+η(Y )(g(ξ, Z)X − g(X, Z)ξ)} (12)

S(X, Y ) = (r

2 + 2f 2 + 2f ′)g(Y, Z)X − (r

2 + 3f 2 + 3f ′)η(X)η(Y ) (13)

where r is a scaler curvature of M and f ′ = ξ(f).
From (9), we obtain

R(X, Y )ξ = −(f 2 + f ′)[η(Y )X − η(X)Y ] (14)

and (10) yields

S(X, ξ) = −(f 2 + f ′)η(X) (15)
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3 Characterization of curves in three dimensional f-
Kenmotsu manifold

In this section first we characterize Frenet curves and then Legendre curves and magnetic
curves.
Let γ : I → M parameterized by the arc length parameter, be a non-geodesic Frenet curve
in three dimensional contact metric manifold. Differentiating (2) with respect to V1, we
have

∇2
V1V1 = ∇V1(κV2)

= κ̇V2 − κ2V1 + κτV3. (16)

Differentiating (16) with respect to V1, we obtain

∇3
V1V1 = ∇V1(κ̇V2 − κ2V1 + κτV3

= −2κκ̇V1 − κ2∇V1V1 + κ̇∇V1V2 + κ̈V2

+κ̇τV3 + κτ̇V3 + κτ∇V1V3. (17)

V3 is taken from the equation (16) and use V2 from the equation (2), we get

V3 = 1
κτ

∇2
V1V1 + κ2

κτ
V1 − κ̇

κτ
V2

= 1
κτ

∇2
V1V1 − κ̇

κτ
∇V1V1 + κ

τ
V1. (18)

Differentiating (17) with respect to V1, we have

∇V1V3 = 1
κτ

∇3
V1V1 − κτ̇ + κ̇τ

(κτ)2 ∇2
V1V1

−κ2τ κ̈ − 2κκ̇2τ − κ2κ̇τ̇

(κ2τ)2 ∇V1V1

− κ̇

κτ
∇2

V1V1 + τ κ̇ − κτ̇

τ 2 V1 + κ

τ
∇V1V1. (19)

Then using the Frenet equation, we get

−τV2 = 1
κτ

∇3
V1V1 − κτ̇ + 2κ̇τ

(κτ)2 ∇2
V1V1

+(κ

τ
− κ2τ κ̈ − 2κκ̇2τ − κ2κ̇τ̇

(κ2τ)2 )∇V1V1

+τ κ̇ − κτ̇

τ 2 V1. (20)

−τ

κ
∇V1V1 = 1

κτ
∇3

V1V1 − κτ̇ + 2κ̇τ

(κτ)2 ∇2
V1V1

+(κ

τ
− κ2τ κ̈ − 2κκ̇2τ − κ2κ̇τ̇

(κ2τ)2 )∇V1V1

+τ κ̇ − κτ̇

τ 2 V1. (21)
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Therefore we have

∇3
V1V1 − κτ̇ + 2κ̇τ

κτ
∇2

V1V1 + (κ2 + τ 2 − κ2τ κ̈ − 2κκ̇2τ − κ2κ̇τ̇

κ3τ
)∇V1V1

+κ

τ
(τ κ̇ − κτ̇)V1 = 0. (22)

Hence we can state the following:

Theorem 3.1. If γ be a unit-speed non-geodesic Frenet curve in contact metric manifold,
then it satisfies the following equation

∇3
V1V1 + λ1∇2

V1V1 + λ2∇V1V1 + λ3V1 = 0 (23)

where
λ1 = −κτ̇ + 2κ̇τ

κτ
,

λ2 = κ2 + τ 2 − κ2τ κ̈ − 2κκ̇2τ − κ2κ̇τ̇

κ3τ
,

λ3 = κ

τ
(τ κ̇ − κτ̇).

Let γ be a non-geodesic legendre curve on three dimensional f -Kenmotsu manifold
M3. Then for the Frenet frame with components (V1, V2, V3) of the curve γ, the values of
curvature κ and torsion τ are given by ([19])

κ =
√

f 2 + δ2

and
τ = f δ̇ − δḟ

f 2 + δ2 .

Differentiating κ and τ with respect to V1, we get

κ̇ = fḟ + δδ̇√
f 2 + δ2 = fḟ + δδ̇

κ
,

κ̈ = (ff̈ + δδ̈ + ḟ 2 + δ̇2) − κ̇2

κ
,

and
τ̇ = (f δ̈ − δf̈) − 2κτκ̇

κ2 .

For Legendre curve γ, using the value of κ, τ , κ̇, κ̈ and τ̇ in λ1 λ2 and λ3 in the Theorem
(3.1), we get

λ1 = −f δ̈ − δf̈

f δ̇ − δḟ
, (24)

λ2 = (f 2 + δ2) + (f δ̇ − δḟ)2

(f 2 + δ2)2 + (fḟ + δδ̇)2

(f 2 + δ2)2 + (fḟ + δδ̇)(f δ̈ − δf̈)
(f 2 + δ2)(f δ̇ − δḟ)

−ff̈ + δδ̈ + ḟ 2 + δ̇2

f 2 + δ2 (25)
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and

λ3 = 3(fḟ + δδ̇) − (f 2 + δ2)(f δ̈ − δf̈)
f δ̇ − δḟ

. (26)

Therefore we have the following theorem

Theorem 3.2. If γ be a unit-speed non-geodesic Legendre curve in three dimensional f-
Kenmotsu manifold, then it satisfies the following

∇3
V1V1 + λ1∇2

V1V1 + λ2∇V1V1 + λ3V1 = 0 (27)

where λ1, λ2 and λ3 are given by (24),(25) and (26).

Let γ be a magnetic curve on three dimensional f-Kenmotsu manifold M3. Then for
the Frenet frame with components (V1, V2, V3) of the curve γ, the value of curvature κ and
torsion τ are given by ([20])

κ =
√

1 − σ2 (28)

and

τ = σ (29)

where

σ = η(γ̇) = g(γ̇, ξ). (30)

Differentiating (30) with respect to V1(= γ̇), we have

σ̇ = f(1 − σ2). (31)

Differentiating κ two times and τ one times with respect to the V1, we get

κ̇ = −fσ
√

1 − σ2 = −fσκ = −fκτ (32)

κ̈ = (−ḟσ − f 2 + 2f 2σ2)
√

1 − σ2

= −ḟκτ − fκ̇τ − fκτ̇ (33)

τ̇ = σ̇ = f(1 − σ2) = fκ2 (34)

Here we see that

κ2 + τ 2 = 1 (35)

Using the value of κ, τ , κ̇, κ̈ and τ̇ of the magnetic curve in λ1 λ2 and λ3 in the theorem(3.1),
we get

λ1 = −f
1 − 2σ2

σ
, (36)

λ2 = 1 + ḟσ + f 2σ2 (37)

λ3 = −f
1 − σ2

σ
(38)

In view of the above equations we can state the following:
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Theorem 3.3. If γ be a unit-speed non-geodesic magnetic curve in three dimensional f-
Kenmotsu manifold, then it satisfies the following

∇3
V1V1 + λ1∇2

V1V1 + λ2∇V1V1 + λ3V1 = 0 (39)

where λ1, λ2 and λ3 are given by (36),(37) and (38).

For Legendre magnetic curve, κ = 1 and τ = 0. Using value of κ and τ in (17), we get

∇3
V1V1 + ∇V1V1 = 0. (40)

Therefore we get the following theorem

Theorem 3.4. A unit-speed Legendre magnetic curve γ in three dimensional f-Kenmotsu
manifold satisfies the following equation

∇3
V1V1 + λ1∇2

V1V1 + λ2∇V1V1 + λ3V1 = 0 (41)

with λ1 = 0, λ2 = 1 and λ3 = 0.

Now for the magnetic slant curve but not Legendre curve, κ and τ are constants.
Then we have also the following theorem

Theorem 3.5. A unit-speed magnetic slant curve γ in three dimensional f-Kenmotsu man-
ifold satisfies the following

∇3
V1V1 + λ1∇2

V1V1 + λ2∇V1V1 + λ3V1 = 0 (42)

with λ1 = 0, λ2 = 1 and λ3 = 0.

4 When a Frenet curve will be a Legendre curve in a
three dimensional f-Kenmotsu manifold?

Theorem 4.1. Let M be a three dimensional f -Kenmotsu manifold. Let γ : I → M be
a Frenet curve in M , with curvature κ > 0 and torsion τ = |fδ̇−ḟ δ

κ2 |. Let σ = η(γ̇) and
σ(t0) = ˙σ(t0) = ¨σ(t0) = 0 at a certain point t0 ∈ I, then γ is a Legendre curve.

Proof. Let M be a three dimensional f -Kenmotsu manifold. Let γ : I → M be a
Frenet curve in M , with curvature κ > 0 and torsion τ = |fδ̇−ḟ δ

κ2 |.
σ = η(γ̇).
Let σ(t0) = ˙σ(t0) = ¨σ(t0) = 0 at a certain point t0 ∈ I. We will show that there exists a
neighbourhood I0 ⊂ I of t0 on which σ = 0.
Firstly we choose a neighbourhood I1 ⊂ I of t0, on which |σ| < 1. γ̇ is not colinear with ξ

at every point I1. The vector fields

γ̇,
ϕγ̇√

1 − σ2
,

ξ − σγ̇√
1 − σ2
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From an orthonormal frame along γ, and consequently we have

∇γ̇E1 = ∇γ̇ γ̇ = a
ϕγ̇√

1 − σ2
+ b

ξ − σγ̇√
1 − σ2

(43)

by choosing certain functions a and b = m γ̇√
1−σ2 , m being an arbitrary constant on I1.

Therefore

κ2 = a2 + b2. (44)

Now differentiating σ = η(γ̇) we have

σ̇ = γ̇(g(ξ, γ̇)) = g(∇γ̇) + g(ξ, ∇γ̇γ̇). (45)

Applying (10) and (43) we have

σ̇ = f(1 − σ2) + b
√

1 − σ2. (46)

From Frenet formula we obtain

E2 = 1
κ

∇γ̇E1 = a

κ
√

1 − σ2
ϕγ̇ + b

κ
√

(1 − σ2)
(ξ − σγ̇) (47)

Let us consider a1 = a
κ

√
1−σ2 and b1 = b

κ
√

(1−σ2)
. Thus

E2 = a1ϕγ̇ + b1(ξ − σγ̇). (48)

Taking differentiation of a1 and b1 we have

ȧ1 = b(ȧb − aḃ)
κ3

√
1 − σ2

+ aσf

κ
√

(1 − σ2)
+ abσ

κ(1 − σ2)

ḃ1 = a(aḃ − ȧb)
κ3

√
1 − σ2

+ bσf

κ
√

(1 − σ2)
+ b2σ

κ(1 − σ2)

Now differentiating (48) we obtain

∇γ̇E2 = ȧ1ϕγ̇ + a1((∇γ̇ϕ)γ̇ + ϕ∇γ̇ γ̇) + ḃ1(ξ − σγ̇) + b1(∇γ̇ξ − σ̇γ̇ − σ∇γ̇ γ̇). (49)

Putting the value of ȧ1 and ḃ1 and using (44),(9) and (10) and after certain long calculations
we have

∇γ̇E2 = a2
ϕγ̇√

1 − σ2
+ b2

(ξ − σγ̇)√
1 − σ2

− κγ̇ (50)

where a2 = − b
κ
c and b2 = a

κ
c with

c = aḃ − bȧ

κ3 − aσ

κ
√

1 − σ2
. (51)

Thus

a2
2 + b2

2 = c2. (52)

26



Again from Frenet formula we have

τE3 = ∇γ̇E2 + κE2.

Using (50) in the above equation we obtain

τE3 = a2
ϕγ̇√

1 − σ2
+ b2

(ξ − σγ̇)√
1 − σ2

− κγ̇ + κγ̇. (53)

Therefore

τ =
√

a2
2 + b2

2. (54)

From (52) and (54) we can conclude that

τ = |c|.

According to our assumption σ(t0) = σ̇(t0) = σ̈(t0) and depending our choice of b we can
state b(t0) = ˙b(t0) = 0.
From (46) we have f(t0) = ḟ(t0) = 0. a(t0) ̸= 0, since b(t0) = 0 and κ(t0) > 0.
As τ = |c| and c = aḃ−bȧ

κ3 − aσ
κ

√
1−σ2 , τ = |aḃ−bȧ

κ3 − aσ
κ

√
1−σ2 | = 0 at t0. Thus there exists a

neighbourhood I0 of t0 such that τ = |aḃ−bȧ
κ3 − aσ

κ
√

1−σ2 | = 0 which implies that

aḃ − bȧ

κ3 − aσ

κ
√

1 − σ2
= 0 (55)

Again
b = m

σ̇√
1 − σ2

, ḃ = m
1√

1 − σ2
(σ̈ + σσ̇2

1 − σ2 ).

Putting these values in equation (55) we obtain

a(σ̈ + 2mσσ̇2

1 − σ2 ) + a3σ

m
− σ̇ȧ = 0. (56)

From [7] using initial conditions σ(t0) = ˙σ(t0) = 0 and a ̸= 0 we claim that σ = 0 on I0.
Now in similar way of [29] we can prove that σ = 0 on the whole I which implies that σ is
a Legendre curve. This completes the proof.
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