
Journal of Pure Mathematics; Vol. 32(2023), 6 − 17

On Weak Compactness of Variable Exponent Spaces

Anslem Uche Amaonyeiro
Department of Mathematics, University of Agriculture, PMB 2373 Makurdi, Nigeria, e-mail :

anslemamaonyeiro@uam.edu.ng

Abstract

This work shows some refined necessary and sufficient conditions placed on the
subsets of variable exponent Lebesgue spaces to satisfy the axiom of weak compact-
ness. We also present some results in connection with conditions for all separable
variable exponent spaces to be weakly Banach-saks. That is, some results on the
Banach-Saks property in variable exponent spaces are given.
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1 Introduction

The extension of the Riesz-Kolmogorov theorem in classical Lp-spaces (1 ≤ p < ∞) has
been recently done to the notion of variable exponent Lebesgue spaces Lp(·)(Ω) (where
the constant p is replaced with the variable p(·)) by Gòrka and Macios [8], Gòrka and
Bandaliyev [7] and Dong et al. [4]. Useful versions of the above mentioned theorem with
underlying measure spaces like Euclidean spaces, locally compact group or metric measure
spaces were authored by the aforementioned researchers. Over the past two decades, the
notion of variable exponent spaces are being used in several areas of harmonic analysis and
differential equations and applications (see [9], [3]). The notion of variable exponent spaces
belong to a generalized class of non-symmetric (rearrangement variant) Orlicz spaces (see
[10], [13]). In a paper ([11]) by F. L. Hernàndez, C. Ruiz and M. Sanchiz, weakly compact
sets are derived in a non-reflexive variable exponent spaces Lp(·)(Ω). The notion has been
widely studied for symmetric (rearrangement invariant) function spaces. For Orlicz spaces
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Lφ(Ω) with the ∆2-condition, useful weak compactness criteria were given by Andô in [2].
In ([11]), the extension of the Andô weak compactness characterization in Orlicz spaces
was carried out in variable exponent Lp(·)(Ω) setting and, also equi-integrable subsets in
the variable exponent spaces Lp(·)(Ω) were studied by obtaining a De la Vallèe Poussin type
theorem ([12]) in Lp(·)(Ω). They apply the De la Vallèe classical result by obtaining the
criteria for when the inclusion between two variable exponent spaces Lq(·)(Ω) ⊂ Lp(·)(Ω)
are weakly compact or L-weakly compact operators meaning that the unit ball BLq(·) is
equi-integrable in Lp(·)(Ω). It also turns out, in their work, that closed exponent functions
p(·) and q(·), the inclusion Lq(·)(Ω) ⊂ Lp(·)(Ω) can be L-weakly compact. As an application,
the authors in ([11]) obtained the weak compactness criteria which are useful in the study
of the weak Banach-Saks property in Lp(·)(Ω) spaces (that is, every weakly convergent
sequence in Lp(·)(Ω) contains a subsequence which is Cesàro convergent).
One of our goals in this paper is to redefine the modular function ρp(·)

(
f
r

)
and also likely

introduce a new norm which is an inverse norm equivalent to the associated Luxemburg
type norm to the modular function. We also redefine the essential range of the exponent
function p(·) in terms of the ε-ball. Also, equi-integrable subsets in Lp(·)(Ω) are studied
and, we provide equivalent statement for the De la Vallèe Poussin type theorem ([5]) in
Lp(·)(Ω).

2 Preliminaries

Let (Ω,
∑

, µ) be a finite separable non-atomic measurable space and L0(Ω) be the space
of all real measurable functions. Given a µ-measurable function p : Ω −→ [1, ∞) or
p : Ω −→ R+, the variable exponent Lebesgue space (or Nakano space), denoted by Lp(·)(Ω),
is the set of all measurable scalar function classes f ∈ L0(Ω) such that the modular function
ρp(·)

(
f
r

)
is finite for some r > 0, where

ρp(·)

(
f

)
=

∫
Ω

∣∣∣∣f(t)
∣∣∣∣p(t)

dµ(t) < ∞

That is,

Lp(·)(Ω) =
{

f ∈ L0(Ω) : ρp(·)

(
f

r

)
< ∞ for some r > 0

}
where the modular function can be redefined as

ρp(·)

(
f

r

)
=

∫
Ω

∣∣∣∣f(t)
r

∣∣∣∣p(t)
dµ(t) = |r|−p(t)

∫
Ω

∣∣∣∣f(t)
∣∣∣∣p(t)

dµ(t) < ∞

The associated Luxemburg type norm is defined as

∥ f ∥p(·)= inf
{

r > 0 : ρp(·)

(
f

r

)
≤ 1

}
The new norm equivalent to the above norm is given as

∥ f ∥′
p(·)= sup

{1
r

> 0 : ρp(·)

(
fr

)
≤ 1

}
= 1

inf
{

r > 0 : ρp(·)

(
f
r

)
≤ 1

}
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That is, ∥ · ∥′
p(·)= 1

∥·∥p(·)
since ∥ f ∥p(·) ̸= 0. Th variable exponent space Lp(·)(Ω) with the

norm ∥ · ∥′
p(·), is Banach lattice.

Consider the following definitions.

Definition 2.1. Let p : Ω −→ R+ be an exponent function defined on Ω. Then the
essential infimum and supremum are respectively given as

p+ := essinf
{

p(t) : t ∈ Ω
}

and p− := esssup
{

p(t) : t ∈ Ω
}

Let p+
|A(·) and p−

|A(·) denote the supremum and infimum of the function p(·) over a mea-
surable subset A ⊂ Ω. The topological dual of the space Lp(·)(Ω) for p+ < ∞, is the
variable exponent space Lp∗(·)(Ω), where p∗(·) is the conjugate function of p(·) such that

1
p(·) + 1

p∗(·) = 1 almost everywhere t ∈ Ω.

Definition 2.2. A variable exponent space Lp(·)(Ω) is separable if and only if the essential
supremum of p : Ω −→ R+ is finite. That is, p+ < ∞ or similarly, if and only if Lp(·)(Ω)
contains no isomorphic copy of l∞.
Throughout this work, we deal with the separable Lp(·)(Ω). Lp(·)(Ω) is reflexive if and only
if 1 < p− ≤ p+ < ∞. This is similar to Lp(·)(Ω) being uniformly convex. That is, a varibale
exponent space Lp(·)(Ω) is uniformly convex if and only if 1 < p− ≤ p+ < ∞.
Recall that ∥ · ∥p(·)= 1 for p+ < ∞ if and only if the modular ρp(·)(f) = 1. Also, every
sequence (ξn) ⊂ Lp(·)(Ω) satisfies the condition:

lim
n→∞

∥ ξn ∥p(·) 0 = if and only if lim
n→∞

ρp(·)(ξn) = 0

The essential range of the exponent function p is defined as

Rp(·) =
{

q ∈ R+ : ∀ ε > 0, µ
(

p−1(|ξ − q|) < ε
)

> 0
}

where µ
(

p−1(|ξ − q|) < ε
)

> 0 can also be constructed as µ
(

p−1(Bε(q))
)

> 0, and

Bε(q) :=
{

ξ : |ξ − q| < ε
}

. Let BLp(·) denotes the closed unit ball of Lp(·)(Ω). The essential
range, Rp(·), is a closed subset of R+ and Rp(·) is compact if p(·) is essentially bounded. Both
the values p− and p+ are embedded in the essential range of p(·). For every q ∈ Rp(·) there
exists a suitable sequence of disjoint measurable subsets (Ak) such that the normalized
sequence, defined by

gk = χAk(
µ(AK)

) p∗(·)−1
p∗(·)

is equivalent to the canonical form of lq, where µ(Ak) ̸= 0,

χAk
(ξ) =

1 if ξ ∈ Ak

0 if ξ /∈ Ak

Remark 2.3. Variable exponent spaces are a special class of Musielak-Orlicz spaces. An
Orlicz function φ : R+

0 −→ [0, ∞] is a convex increasing function if φ(0) = 0, lim
x→0+

φ(x) =
0 and lim

x→∞
φ(x) = ∞.

A function Ψ : Ω × [0, ∞) −→ [0, ∞] is a Musielak-Orlicz function if Ψ(ξ, ·) is an Orlicz
function ∀ ξ ∈ Ω and ξ 7→ Ψ(ξ, x) is measurable for all x ≥ 0.
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Definition 2.4. Let Ψ(ξ, x) be a Musielak-Orlicz function. The Orlicz space Lψ(Ω) is
defined as the set of all measurable scalar functions on Ω such that ρΨ

(
f
r

)
is finite for

some r > 0, where ρΨ(·) is the modular function defined by

ρΨ(f) =
∫

Ω
Ψ

(
ξ, |f(ξ)|

)
dµ(ξ) < ∞

In some cases if Ψ(ξ, x) = xp(ξ), then the Orlicz space LΨ is reduced to the variable exponent
space Lp(·)(Ω) and, Ψ(ξ, x) = φ(x) ∀ ξ ∈ Ω, then we get the Orlicz space Lφ(Ω).

Definition 2.5. Let X be a Banach function space and S ⊂ X(Ω) be a bounded subset
of X(Ω). Then S is equi-integrable if

lim
µ(A)→0

sup
f∈S

∫
Ω

∣∣∣∣fχA(ξ)
∣∣∣∣p(ξ)

dµ(ξ) = lim
µ(A)→0

sup
f∈S

∥ fχA ∥X= 0 provided X(Ω) = Lp(·)(Ω)

In other way, in classical Lp-spaces, equi-integrability has special role in the notion of
Lp(·)(Ω) spaces which is defined as

lim
µ(A)→0

sup
f∈S

∫
Ω

∣∣∣∣fχA(ξ)
∣∣∣∣pdµ = lim

µ(A)→0
sup
f∈S

∥ fχA ∥X= 0 provided p(·) = p

Some of the important roles of equi-integrability of X(Ω) can be found in Riesz-
Kolomogorov compactness type theorem in Lp(·)(Ω). Also, the boundedness of equi-integrable
subsets in L1(Ω) in some Orlicz spaces Lφ(Ω) is found in the classical De la Vallèe Poussin’s
result ([4]). The extension of this result to Lp(·)(Ω) spaces and the equivalent statement of
Lp·(Ω) equi-integrability was done in [11] as presented as the first result in the next section.

3 Some Equivalent Results On Equi-Integrability

Proposition 3.1. Let Lp(·)(Ω) with p+ < ∞ and S ⊂ Lp(·)(Ω) bounded. Then S is equi-
integrable if and only if

lim
x→∞

sup
f∈S

∫
|f |>x

∣∣∣∣f(t)
∣∣∣∣p(t)

dµ = 0

In the next result, we present the equivalence of Proposition 3.1

Proposition 3.2. Let Lp(·)(Ω) be a variable exponent space with p+ < ∞. Then a bounded
subset S ⊂ Lp(·)(Ω) is uniformly integrable if and only if

lim
ξ→∞

sup
f∈S

∫
ξ /∈A

∣∣∣∣fχA(ξ)
∣∣∣∣p(ξ)

dµ(ξ) = 0 or sup
f∈S

∥ fχA(ξ) ∥p(·)≤ ε.

Proof. Let p+ < ∞ and S be bounded and uniformly integrable. We show that

lim
ξ→∞

sup
f∈S

∫
ξ /∈A

∣∣∣∣fχA(ξ)
∣∣∣∣p(ξ)

dµ(ξ) = 0 =⇒ sup
f∈S

∥ fχA(ξ) ∥p(·)≤ ε

Since f ∈ S is bounded, then let sup
f∈S

∥ fχA(ξ) ∥p(·)≤ M < ∞.

Define the sets Aξ
p =

(
supp(f)

)c
=

{
t ∈ Ω : |f(t)| > ξ

}
, where supp(f) =

{
ξ ∈ Ω : f(ξ) ̸= 0

}
.
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Now, we show that lim
ξ→∞

sup
f∈S

µ(Aξ
p) = 0

Whence,

sup
f∈S

µ(Aξ
p) ≤ sup

f∈S
µ

(
supp(f)

)c
≤ α

ξ
sup
f∈S

∥ fχAξ
p

∥p(·)≤
1
ξ

sup
f∈S

∥ fχAξ
p

∥p(·)

≤ sup
f∈S

1
ξ

(
1 + µ(Ω)

)
∥ fχAξ

p
∥p(·)≤

M

ξ

(
1 + µ(Ω)

)
< ε

provided ξ > 0 and α > 0.
On the other hand, let ε > 0 then there exists ξ > 1 such that sup

f∈S
∥ fχAξ

p
∥p(·)≤

ε

2. Then

for every measurable subset A with
(

µ(A)
) 1

p+
<

ε

2ξ
, we have

sup
f∈S

∥ fχA ∥p(·) ≤ sup
f∈S

(∥∥∥∥fχA∩supp(f)c

∥∥∥∥
p(·)

+
∥∥∥∥fχA∩supp(f)

∥∥∥∥
p(·)

)

≤ sup
f∈S

(∥∥∥∥fχA∩supp(f)c

∥∥∥∥
p(·)

+
(

µ(A)
) 1

p+
ξ

)
≤ ε

2 + ε

2 = ε

Thus, lim
ξ→∞

sup
f∈S

∥ fχA(ξ) ∥p(·)= 0.

Theorem 3.3. A bounded S ⊂ Lp(·)(Ω) is equi-integrable if and only if there exists an
Orlicz function with lim

x→0+
φ(0) = 0 for p+ < ∞ such that

sup
f∈S

∥ φ(f)(ξ) ∥p(·)≤ ε.

Proof. Assume that S is equi-integrable. Consider a convex increasing function (ξn) such
that, for ξn > 2ξn−1 for n = 2, 3, · · ·

sup
f∈S

∥∥∥∥fχ−ξn−1>f>ξn−1

∥∥∥∥
p(·)

≤ 1
(n − 1)2

Defining a function φ(ξ) by

φ(ξ) =
∞∑
n=2

(ξ − ξn−1), for ξ ≥ 0

Moreover, lim
ξ→0+

φ(ξ) = 0. For the interval [ξn−1, ξn), we have the partial sum

φ(ξ) =
n∑

α=2
(ξ − ξα−1) = nξ

n∑
α=2

ξα−1 ≥ nξ − 2ξn−1

Hence, for all ε > 0 there exists N(ε) > 0 such that

∥ φ(f) ∥p(·)≤
∞∑
n=2

∥ fχ−ξn−1>f>ξn−1 ∥p(·)≤
∞∑
n=2

1
(n − 1)2 = π2

6

Therefore, sup
f∈S

∥ φ(f) ∥p(·)≤ sup π2

6 ≤ ε.

Conversely, given ε > 0, we assume that sup
f∈S

∥ φ(f) ∥p(·)≤ ε by hypothesis. We show that

the bounded f ∈ S is equi-integrable. For every ξ ≥ ξε, we have ξ ≤ εφ(ξ). Then we have∥∥∥∥fχ|f |>ξε−1

∥∥∥∥
p(·)

≤ ε

∥∥∥∥φ(f)χ|f |>ξε−1

∥∥∥∥
p(·)

≤ ε sup
f∈S

∥∥∥∥φ(f)
∥∥∥∥
p(·)

Hence the proof.
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Definition 3.4. Let p, q : Ω −→ R+ be exponent functions such that p(·) ≤ q(·). The
inclusion Lq(·)(Ω) ⊂ Lp(·)(Ω) is said to be L-weakly compact if the unit ball BLq(·) is equi-
integrable in Lp(·)(Ω).

Let S be the unit ball BLq(·) in the Theorem 3.3 to get following result:

Proposition 3.5. Let p(·) ≤ q(·) ≤ r(·) be exponent functions. The inclusion Lr(·)(Ω) ⊂
Lq(·)(Ω) ⊂ Lp(·)(Ω) is L-weakly. That is, there exists an Orlicz function φ with lim

ξ→0+
φ(ξ) =

0 such that Lq(·)(Ω) ⊂ LΨ(Ω) where the Musielak-Orlicz function Ψ is given by Ψ(ξ, x) =(
φ(x)

)p(ξ)
.

Consider the following result by Hernàndez, Ruiz, Sanchiz (2021).

Proposition 3.6. Let p(·) ≤ q(·) be exponent functions. If ess inf
(

q(x) − p(x)
)

= δ > 0,
then the inclusion Lq(·)(Ω) ⊂ Lp(·)(Ω) is said to be L-weakly.

Consider the equivalent statement of the Proposition 3.6.

Proposition 3.7. Let p, q : Ω −→ R+ be exponent functions such that p(·) ≤ q(·). If
ess inf

(
p(ξ) − q(ξ)

)
= δ > 0, then the inclusion Lq(·)(Ω) ⊂ Lp(·)(Ω) is said to be L-weakly.

Proof. We want to show that the limit of the modular function tends to zero. That is,

lim
µ(A)→0

sup
||f ||≤1

ρp(·)fχA = 0

Let r(ξ) = p(ξ)
q(ξ) ≤ 1. Denote the exponent function with conjugate function by r∗(ξ) =

p(ξ)
p(ξ)−q(ξ) for ξ ∈ Ω. It applies that (r∗)+ ≤ p+

δ
< 0 < ∞. Using Hölder’s inequality, we have

ρq(·)(fχA) =
∫

Ω
|f |q(·)χAdµ ≤ 4 ∥ f q(·) ∥r(·)∥ χA ∥r∗(·)

Also,

ρr(·)

(
f q(·)

)
=

∫
Ω

∣∣∣∣f ∣∣∣∣p(ξ)
dµ ≤∥ f ∥p

+

p(·)≤ 1

When ∥ f q(·) ∥r(·)≤ 1, we have

lim
µ(A)→0

sup
||f ||≤1

ρp(·)

(
fχA

)
≤ lim

µ(A)→0
4 ∥ f q(·) ∥r(·)= 0

We present a weaker condition.

Proposition 3.8. Let p(·) ≤ q(·) be exponent functions in Ω = [0, α] with q+ < ∞ and
(p − q)(·) increasing or non-decreasing. Assume that |(α − x)p−q| < ε, then

(i) lim
x→α

(α − x)(p−q)(x) = 0, and
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(ii) There exists a sequence (xn) defined by xn = xn−1+α
2 ∀ n ∈ N, and x0 ∈ [0, α)

satisfying that
∞∑
n=1

1
xn − xn−1

∫ xn

xn−1

(
xn − xn−1

) (p−q)(t)
p(t)

dt < ∞

Then, the inclusion Lq(·)
(

[0, α]
)

⊂ Lp(·)
(

[0, α]
)

is L-weakly compact.

Proof. Let ε > 0 and n0 ∈ N such that

∑
n0∈N

1
xn − xn−1

∫ xn

xn−1

(
xn − xn−1

) (p−q)(t)
p(t)

dt <
ε

4

and
(

xn − xn−1

) (p−q)(t)
p(t)

≤
(

α − xn

) (p−q)(t)
N

<
ε

4 (1)

for (p − q)
p

≤ (p − q)
N

where N = p+ = ess sup
x∈Ω

∀ x ∈ [xn−1, xn), n ≥ n0.

Assume that r = (p − q)(xn0) < 0. Let f ∈ BLq(·) and any measurable set E with

µ(E) ≤
(
ε
8

) N
r

+α
. We define the following sets

E1 =
{

x ∈ [0, xn0) ∩ E : |f(x)| ≤
(8

ε

) 1
r
}

, E2 =
{

x ∈ [0, xn0) ∩ E : |f(x)| >
(8

ε

) 1
r
}

where supp(f) = E1 and
(

supp(f)
)c

= E2.

Then for f ∈ BLq(·) and µ(E) ≤
(

ε

8

) N
r

+α
, we have

∫
[0,xn0 0∩E

|f |p(t)dt =
∫
E1

|f |p(t)dt +
∫
E2

|f |p(t)dt

≤
(

ε

8

) N
r

µ(E) +
∫
E2

|f |q(t)|f |p(t)−q(t)dt

≤ ε

8 +
∫
E2

|f |q(t) ε

8dt ≤ ε

8 + ε

8 = ε

4

Also, ∫ α

xn0

|f |p(t)χEdt =
∑
n0∈N

∫ xn

xn−1
|f |p(t)χEdt

=
∑
n0∈N

∫
En−1,1

|f |p(t)χEdt +
∫ xn

En−1,2
|f |p(t)χEdt

where
En−1,1 = E ∩

{
x ∈ [xn−1, xn) : |f(x)| ≤ 1(

xn − xn−1

) 1
q(x)

}

En−1,2 = E ∩
{

x ∈ [xn−1, xn) : |f(x)| >
1(

xn − xn−1

) 1
q(x)

}

12



Using (1), we have

∑
n0∈N

∫
En−1,1

|f |p(t)dt ≤
∑
n0∈N

∫ xn

xn−1

1(
xn − xn−1

) p(t)
q(t)

dt

≤
∑
n0∈N

∫ xn

xn−1

1(
xn − xn−1

)(
xn − xn−1

) (p−q)(t)
p(t)

dt <
ε

4

Also, for f ∈ BLq(·) , we have
∑
n0∈N

∫
En−1,2

|f |p(t)dt ≤
∑
n0∈N

∫ xn

xn−1
|f |q(t)|f |(p−q)(t)dt

≤
∑
n0∈N

∫ xn

xn−1
|f |q(t)

(
xn − xn−1

) (p−q)(t)
p(t)

dt

≤
∑
n0∈N

∫ xn

xn−1
|f |q(t) ε

4dt ≤ ε

4

Hence the result.

Consider the equivalence of Theorem 4.2 in [11] about relatively weakly compactness of
subset Lp(·)(Ω).

Theorem 3.9. Let Lp(·)(Ω) be with p+ < ∞. A subset S ⊂ Lp(·)(Ω) is relatively weakly
compact if and only if S is norm bounded and, ∀ g ∈ Lp∗(·)(Ω), we have

lim
µ(E)→0

sup
f∈S

∫
E

|fg|dµ = lim
µ(E)→0

inf
f∈S

∫
E

|fg|dµ = 0

Proof. Suppose that S is relatively weakly compact. Then we show that S is norm bounded.
To see this, let ε > 0 be given, then we have g ∈ Lp∗(·)(Ω), a sequence (En) with µ(En) → 0
and (fn) ∈ S. Since S is relatively weakly compact, there exists a subsequence (fnk

) →
f ∈ Lp(·)(Ω) as k → ∞. Thus, ∀ A ∈ ∑,

lim
µ(A)→0

sup
fnk

∈S

∫
Ω

|fnk
gχA|dµ = lim

µ(A)→0
inf
fnk

∈S

∫
Ω

|fnk
gχA|dµ = 0

from the notion that ∫
Ω

fnk
g0χAdµk → ∞−−−−→

∫
Ω

fg0dµ

On the other hand, let S be norm bounded and p+, p− < ∞. Since S is norm bounded,
there exists a sequence (fn) ⊂ S with ∥ fn ∥p(·)≤ M < ∞. From Bolzano-Weierstrass
theorem, there exists a Cauchy subsequence (fnk

) such that for all g ∈ Lp∗(·)(Ω),∫
Ω

(
fnk

− fnl

)
gdµ −→ 0 as k, l → 0 or

∥∥∥∥(
fnk

− fnl

)
g

∥∥∥∥
p(·)

< ε ∀ nk, nl > N(ε)

Let us denote Gm =
{

t ∈ Ω : |f(t)| ≤ m
}

. Since g ∈ L1(Ω), consider large natural m such
that µ(Gc

m) ≤ δ. With dominated convergence theorem, a simple function gs such that
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∥ gm − gs ∥p∗(·)≤
ε

24M
. Thus, for k, l large enough so that

∫
Ω

∣∣∣∣(fnk
− fnl

)
gs

∣∣∣∣dµ <
ε

3, we
use Hölder’s inequality to get∣∣∣∣ ∫

Ω

(
fnk

− fnl

)
gdµ

∣∣∣∣ =
∣∣∣∣ ∫
Gm

(
fnk

− fnl

)
gdµ +

∫
Gc

m

(
fnk

− fnl

)
gdµ

∣∣∣∣
≤

∫
Gm

∣∣∣∣(fnk
− fnl

)
g

∣∣∣∣dµ +
∫
Gc

m

∣∣∣∣(fnk
− fnl

)
g

∣∣∣∣dµ

≤
∫

Ω

∣∣∣∣(fnk
− fnl

)
g

∣∣∣∣dµ + ε

3
≤

∫
Ω

∣∣∣∣(fnk
− fnl

)
(gm − gs)

∣∣∣∣dµ +
∫

Ω

∣∣∣∣(fnk
− fnl

)
gs

∣∣∣∣dµ + ε

3
≤ ε

Therefore, we have (fnk
) is a weakly Cauchy sequence. So, (fnk

) is weakly convergent to a
function f ∈ Lp(·)(Ω) and S is relatively weakly compact.

Let Lp(·)(Ω) be a variable exponent space with Ω1 = p−1
(

{1}
)

. Consider the equivalent
statement of the Theorem 4.3 in [11] with similar proof.

Theorem 3.10. Let Lp(·)(Ω) with p+ < ∞ and µ(Ω1) = µ
(

p−1
(

{1}
))

= 0. A subset
S ⊂ Lp(·)(Ω) is relatively weakly compact if and only if it is norm bounded and

lim
n→∞

sup
f∈S

1
(1 + λ)n

∫
Ω

|λn|p(t)|f(t)|p(t)dµ = 0 for λ ̸= −1 (2)

Proof. We prove by contradiction. Let S ⊂ Lp(·)(Ω) be norm bounded and clearly suppose
S ⊂ BLp(·) . Hence, for every f ∈ S, we have

∫
Ω |f(t)|np(t)dµ ≤ 1. Suppose that (2) does not

hold, so there exist ε > 0, (λn) ↘ 0 and (fn) ⊂ S such that, for every n ∈ N,
∫

Ω

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

dµ ≥ (λn + 1)ε (3)

Since p− = 1 and µ(Ω1) = 0, we can take a sequence (nδn) ↘ 0 such that the sets
Bn = {t ∈ Ω : np(t) ≤ nδn} satisfy 0 < µ(Bn) ≤ ε

3n . Suppose that (λn) satisfies the
following properties:

0 ≤ λn + 1 ≤ 1
2n

,
∑
n

λn ≤ 1, sup
t∈Bc

n

(nλn)np(t)

λn
≤ (nλn)nδn

λn
≤ ε

3 (4)

where Bc
n = {t ∈ Ω : np(t).δn}. Consider the function gn(t) =

∣∣∣∣λnfn(t)
∣∣∣∣n(p(t)−1)

. For a.e.
t ∈ Ω, we have

2
∣∣∣∣λnfn(t)gn(t)

∣∣∣∣ = 2
∣∣∣∣λnfn(t)

∣∣∣∣np(t)

Put p(t)·∗ (t) − p∗(t), we get
∣∣∣∣gn(t)

∣∣∣∣np∗(t)
=

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

14



Let g(t) = sup
n

|gn(t)|. We claim that g ∈ Lp∗(·)(Ω). Since gnp
∗(·) ≤

∑
n

gnp
∗(·)

n , we get

∫
Ω

∣∣∣∣g(t)
∣∣∣∣np∗(t)

dµ ≤
∑
n∈N

∫
Ω

∣∣∣∣gn(t)
∣∣∣∣np∗(t)

dµ =
∑
n∈N

∫
Ω

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

dµ

≤
∑
n∈N

λnp
−

n

∫
Ω

∣∣∣∣fn(t)
∣∣∣∣np(t)

dµ ≤
∑
n∈N

λn ≤ 1

Considering the sets An :=
{

t ∈ Ω : |fn(t)| > n
}

, we get

inf
t∈Bn

nnp(t)µ(An) ≤
∫
Bn

∣∣∣∣fn(t)
∣∣∣∣np(t)

dµ ≤ 1

So, lim
n→∞

sup
t∈An

1
nnp(t) −→ 0 ≥ µ(An). Therefore there exists n0 such that n > n0,

∫
An

∣∣∣∣fn(t)g(t)
∣∣∣∣dµ <

ε

6

Hence ∫
Ω

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

dµ =
∫
An

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

dµ +
∫
Ac

n

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

dµ

≤
∫
An

∣∣∣∣λnfn(t)
∣∣∣∣np(t)

dµ + sup
t∈Bc

n

(
n(λn + 1)

)np(t)
µ

(
Ac
n ∩ Bc

n

)

+ sup
t∈Bn

(
nλn

)np(t)
µ

(
Ac
n ∩ Bn

)
≤

∫
An

2
∣∣∣∣λnfn(t)gn(t)

∣∣∣∣dµ + (λn + 1)ε

3 + n(λn + 1) ε

3n

≤ 2λn

∫
An

∣∣∣∣fn(t)gn(t)
∣∣∣∣dµ + (λn + 1)2ε

3
< (λn+1)ε

which contradicts (2).
Conversely, let g ∈ Lp∗(·)(Ω) and r > 0 such that

∫
Ω |rg(t)|np∗(t)dµ < ∞ or sup

n

∫
Ω

|rg(t)|np∗(t)dµ ≤
M < ∞. Now given ε > 0, then there exists ξ0 > 0 such that

sup
f∈S

1
(1 + ξ0)n

∫
Ω

|ξ0f(t)|np(t)dµ <
εr

2

Take δ > 0 such that, for every measurable set E with µ(E) < δ,∫
E

|rg(t)|np∗(t)dµ ≤ ε(ξ0 + 1)r
2

Thus, using Young inequality ([5] Lemma 3.2.20), we have

sup
f∈S

∫
E

|f(t)g(t)|dµ ≤ 1
(ξ0 + 1)r

[
sup
f∈S

∫
E

|ξ0f(t)|np(t)dµ +
∫
E

|rg(t)|np∗(t)dµ
]

≤ 1
r

(
εr

2

)
+ 1

(ξ0 + 1)r

(
ε(ξ0 + 1)r

2

)
= ε

We conclude that S is relatively weakly compact.
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4 Some Results on Banach-Saks Property

Recall the following definitions describing the criteria for variable exponent spaces Lp(·)(Ω),
with p+ < ∞ to be weakly Banach-Saks.

Definition 4.1. Let X be a Banach space over a field R. Then X is said to be Banach-Saks
if for every bounded sequence (ξn) ⊂ X there exists a subsequence (ξnk

)k∈N which is Cesàro
convergent. That is, there exists a point ξ ∈ X such that∥∥∥∥1

k

k∑
α=1

ξnα − ξ
∥∥∥∥
X

< ε ∀ α > α0 ∈ N

Equivalently,

lim
k→∞

∥∥∥∥1
k

k∑
α=1

ξnα − ξ

∥∥∥∥
X

= 0.

Definition 4.2. A Banach space X is said to be weakly Banach-Saks if for every weakly
convergent (ξn) there exists (ξnk

) which is Cesàro convergent. Every Banach-saks space is
also weakly Banach-saks. The notion of Banach-Saks is hereditary. This means a Banach-
Saks space (or weakly Banach-Saks space) passes the property to closed subspaces of them-
selves.

Theorem 4.3. The space Lp(·)(Ω) is weakly Banach-Saks if and only if p+ < ∞.

Proof. Let ess inf
x∈Ω

p(x) < ∞. Then Lp(·)(Ω) has an isomorphic copy of l∞ which is weakly
Banach-Saks, so is Lp(·)(Ω).
Assume on the other hand that the space Lp(·)(Ω) is weakly Banach-Saks, Then we show
that p+ < ∞. To do this, let (ξn) be a pairwise disjoint weakly convergent sequence in
Lp(·)(Ω) which means we have a subsequence (ξnk

) which satisfies the condition of Cesàro
convergence. Let (ξnχΩ1) and (ξnχΩ\Ω1) be weakly convergent sequences in L1(Ω1) and
Lp(·)(Ω \ Ω1) respectively. Since L1(Ω1) is weakly Banach-saks, then there exists a subse-
quence (ξnk

χΩ1) which is Cesàro convergent. On other hand as∥∥∥∥ 1
n

n∑
α=1

ξα

∥∥∥∥
p(·)

=
∥∥∥∥ 1

n

[ n∑
α=1

ξαχΩ1 +
n∑

α=1
ξαχΩ\Ω1

]∥∥∥∥
p(·)

≤
∥∥∥∥ 1

n

n∑
α=1

ξαχΩ1

∥∥∥∥
p(·)

+
∥∥∥∥ 1

n

n∑
α=1

ξαχΩ\Ω1

∥∥∥∥
p(·)

It remains to show that (ξnχΩ\Ω1) is Cesàro convergent for some (ξnl
). Assume that (ξn)

in Lp(·)(Ω \ Ω1) the sequence (ξn) is relatively compact since it is weakly convergent.
Thus,

lim
λ→0

inf
n∈N

1
(1 + λ)n

∫
Ω

∣∣∣∣λξk(t)
∣∣∣∣np(t)

dt = lim
λ→0

inf
n∈N

ρnp(·)(λξk)

(1 + λ)n = 0 for λ ̸= −1

Therefore,

0 ≥ − lim
n→∞

ρnp(·)

( 1
n

n∑
α=1

ξα

)
= − lim

n→∞

n∑
α=1

ρnp(·)

(
ξα
n

)
≤ − lim

n→∞

n∑
α=1

sup
m∈N

ρnp(·)

(
ξm
n

)

≤ − lim
n→∞

n∑
α=1

inf
m∈N

ρnp(·)

(
ξm
n

)
= − lim

n→∞
inf
m∈N

(
1 · ρnp(·)

(
ξm
n

))
= 0
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This shows that ess inf
x∈Ω

p(x) < ∞.

Consider the following results involving the embeddings and closed subspaces of Lp(·)(Ω).

Theorem 4.4. Let p(·) ≤ q(·) and p+, q+ < ∞. Then Lq(·)(Ω) ↪→ Lp(·)(Ω) is weakly
Banach-saks if and only if Lp(·)(Ω) is weakly Banach-saks.

Theorem 4.5. Let Lq(·)(Ω) ⊂ Lp(·)(Ω) be a closed variable exponent subspace such that
µ(Ω) ̸= 0 for p(·) ≤ q(·). Assume that Lp(·)(Ω) is weakly Banach-Saks. Then the quotient
space, Lp(·)(Ω)

/
Lq(·)(Ω) is weakly Banach-Saks.
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