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Abstract

One of the important problems in finite group theory, is characterization of groups
by specific property. For this purpose, in this paper, we prove that chevalley groups
G2(2n), where 22n + 2n + 1 is a prime number can be uniquely determined by
nse(G2(2n)).

AMS Subject Classification : 2010.Primary 20D60; Secondary 20D06.
Key words : element order, set of number of elements with the same order, chevalley

groups.

1 Introduction

Let G be a finite group, π(G) be the set of prime divisors of order of G and πe(G) be the
set of orders of elements in G. If k ∈ πe(G), then we denote the set of the number of
elements of order k in G by mk(G) and the set of the number of elements with the same
order in G by nse(G). In otherwords, nse(G) = {mk(G) : k ∈ πe(G)}. Also we denote a
Sylow p-subgroup of G by Gp and the number of Sylow p-subgroups of G by np(G). If a ,b
be two integer numbers, then we denote the greatest common divisor of a, b by (a; b). The
prime graph Γ(G) of group G is a graph whose vertex set is π(G), and two vertices u and
v are adjacent if and only if uv∈πe(G). Moreover, assume that Γ(G) has t(G) connected
components πi, for i = 1, 2, . . . , t(G). In the case where G is of even order, we always
assume that 2 ∈ π1.
The characterization of groups by nse(G) pertains to Thompson’s problem ([21]). Thomp-
son’s Problem. Let

Γ(G) = {(n, mn) | n ∈ πe(G) and mn ∈ nse(G)},

where mn is the number of elements with order n. Suppose that Γ(G) = Γ(H). If G is a
finite solvable group, is it true that H is also necessarily solvable?
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The authors in ([7],[8],[9],[10],[11],[12],[13],[14]) proved that these groups can be character-
ized by using the set of elements with the same order and order of the group. Furthermore
in the way, characterization of group by nse(G) in ([1],[2],[3],[20],[22]) the authors proved
that some of groups are characterizable by the number of elements with the same order.
For example, some linear groups, symmetric groups, PSL(3, q), G2(q), where q2 + q + 1
such that q is odd, q ≡ −1( mod 3) and L2(3n) by using nse(G) can be characterized. In
this paper, we prove that chevalley groups G2(2n), where 22n + 2n + 1 is a prime number
can be uniquely determined by number of elements with the same order. In fact, we prove
the following main theorem.
Main Theorem. Let G be a group with nse(G) = nse(G2(2n)) where 22n + 2n + 1 is a
prime number. Then G ∼= G2(2n).

Lemma 1.1. [16] Let G be a Frobenius group of even order with kernel K and complement
H. Then

1. t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ(G);

2. |H| divides |K| − 1;

3. K is nilpotent.

Definition 1.2. A group G is called a 2-Frobenius group if there is a normal series 1⊴H⊴

K ⊴G such that G/H and K are Frobenius groups with kernels K/H and H respectively.

Lemma 1.3. [5] Let G be a 2-Frobenius group of even order. Then

1. t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;

2. G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 1.4. [29] Let G be a finite group with t(G) ≥ 2. Then one of the following
statements holds:

1. G is a Frobenius group;

2. G is a 2-Frobenius group;

3. G has a normal series 1⊴H ⊴K ⊴G such that H and G/K are π1-groups, K/H is
a non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 1.5. [15] Let G be a finite group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G | gm = 1}, then m | |Lm(G)|.

Lemma 1.6. Let G be a group containing more than two elements. If the integer number
s be the maximal numbers of elements of the same order in G is finite, then G is finite and
|G| ≤ s(s2 − 1).

Proof. You see([24]).
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Lemma 1.7. Let G be a finite group. Then for every i ∈ πe(G), φ(i) divides mi(G), and
i divides ∑

j|i mj(G). Moreover, if i > 2, then mi(G) is even.

Proof. By Lemma 1.5, the proof is straightforward.

Lemma 1.8. [30] Let q, k, l be natural numbers. Then

1. (qk − 1, ql − 1) = q(k,l) − 1.

2. (qk + 1, ql + 1) =

q(k,l) + 1 if both k
(k,l) and l

(k,l) are odd,
(2, q + 1) otherwise.

3. (qk − 1, ql + 1) =

q(k,l) + 1 if k
(k,l) is even and l

(k,l) is odd,
(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1 the inequality (qk − 1, qk + 1) ≤ 2 holds.

Lemma 1.9. [26] Let G be a non-abelian simple group such that (5, |G|) = 1. Then G is
isomorphic to one of the following groups:

(a) L2(q), q ≡ ±2 (mod 5);

(b) L3(q), q ≡ ±2 (mod 5);

(c) G2(q), q ≡ ±2 (mod 5);

(d) U3(q), q ≡ ±2 (mod 5);

(e) 3D4(q), q ≡ ±2 (mod 5);

(f) 2G2(q), q = 32m+1, m ≥ 1.

Lemma 1.10. [18] Let p, q be prime numbers and m,n be natural numbers such that
pm − qn = 1. Then one of the following statements holds:

1. If m = 1 then p = 22t + 1 where t ≥ 0 is a integer number;

2. If n = 1 then q = 2p0 − 1,where p0 is a prime number;

3. If m, n > 1then (p, q, m, n) = (3, 2, 2, 3);

2 Proof of the Main Theorem

In this section, we prove that the chevalley groups G2(2n) are characterizable by the number
of elements with the same order. In fact, we prove that if G is a group with nse(G) =
nse(G2(2n), where 22n + 2n + 1 is a prime number, then G ∼= G2(2n). We divide the proof
to several lemmas. From now on, we denote the group G2(2n) by R and the numbers 2n

and 22n + 2n + 1 by q and p, respectively. Recall that G is a group with nse(G) = nse(R).
Let G be a group such that nse(G) = nse(G2(2n), where 22n + 2n + 1 is a prime number,
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and mn be the number of elements of order n. By Lemma 1.6 we have that G is finite. We
note that mn = kϕ(n), where k is the number of cyclic subgroups of order n. Also we note
that if n > 2, then mn is even. If n ∈ πe(G), then by Lemma 1.7 and the above discussion,
we have
ϕ(n) | mn,
n | ∑

d|n md

Lemma 2.1. p is an isolated vertex of Γ(G).

Proof. We prove that p is an isolated vertex of Γ(G). Assume the contrary, then there is a
prime number t ∈ π(G) − {p}, so that tp ∈ πe(G). So, we deduce tp ≥ 2p = 2(q2 + q + 1) ≥
q2 + q + 1, so we deduce k(G) > q2 + q + 1, which is a contradiction. Hence p is an isolated
vertex, t(G) ≥ 2.

Lemma 2.2. If rp ̸∈ πe(G), for every r ̸= p ∈ π(G), then p | mr.

Proof. By ([19, Theorem1]) the maximal torus T of G2(2n) have the orders q2 + q + 1 and
q2 − q + 1. Then, there is an element x ∈ R and some torus T such that |x| = r and
T ≤ CG(x) for some T . It follows that so |cl(x)| is the multiple of |R|

|T | for some T . But
mr(R) = ∑

|x|=r,x̸=1 |cl(x)|. Hence p | mr.

.

Lemma 2.3. mp(G) = mp(R) = q7(q2−1)2(q3+1)
6 and np(G) = |R|

6p
.

Proof. First we know that |R| = q6(q6 − 1)(q2 − 1). Since |Rp| = p, we deduce that Rp

is a cyclic group of order p. Thus mp(R) = ϕ(p)np(R) = p − 1)np(R). Now it is enough
to show np(R) = |R|

6p
. By[29], p is an isolated vertex of Γ(G). Hence |CR(Rp)| = p and

|NR(Rp)| = xp for a natural number x. We know that NR(Rp)
CR(Rp) embed in Aut(Rp), which

implies x | p − 1. Furthermore, by Sylow’s Theorem, np(R) = |R : NR(Rp)| and np(R) ≡ 1(
mod p). Therefore p divides |R|

(xp) −1. Thus q2 +q+1 divides q6(q6−1)(q2−1)
xp

−1. It follows that
q2+q+1 divides q14−q12−q8+q6

q2+q+1 −x. As a result q2+q+1 | q12−q11−q10+2q9−q8−q7+q6−x,
so we have q2 + q + 1 | (q2 + q + 1)(q10 − 2q9 + 4q7 − 5q6 + 6q4 − 6q3 + 6q − 6) + (6 − x) we
have p | 6 − x. Since x | p − 1, as a result x | 22n − 2n, we deduce that x = 6. It followes
np(R) = |R|

6p
.

Lemma 2.4. |G| divides (q2+q)|R|
6 .

Proof. By Lemma 2.2, we have rp ̸∈ πe(G) for any prime r ∈ π(G) − {p}. It follows that
the sylow r-subgroup Gr of G acts fixed freely on the set of elements of order p and so
|Gr| | mp. Therefore |G| | (q2+q)|R|

6 .

Lemma 2.5. m2(G) = m2(R). In particular p | m2(R).

Proof. First if 2 < n ∈ πe(G), then mn is even. By Lemma 1.7 2 | 1 + m2(R). On the
other hand, by ([4],[20]) in G the only odd number in nse(G) − 1 is m2(G). Hence we have
m2(G) = m2(R). By Lemma 2.2 we have p | m2(R).
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Lemma 2.6. The group G is not a Frobenius group.

Proof. Let G be a Frobenius group with kernel K and complement H. Then by Lemma
2.6, t(G) = 2 and π(H) and π(K) are vertex sets of the connected components of Γ(G) and
|H| divides |K| − 1. Now by Lemma 2.1, p is an isolated vertex of Γ(G). Thus we deduce
that (i) |H| = p and |K| = |G|/p or (ii) |H| = |G|/p and |K| = p. Since |H| divides |K|−1,
we conclude that the last case can not occur. So |H| = p and |K| = |G|/p, hence q2 +q+1 |
q6(q6−1)(q2−1)

q2+q+1 − 1. So we conclude q2 + q + 1 | (q10 − 2q9 + 4q7 − 5q6 + 6q4 − 6q3 + 6q − 6) + 5.
Thus p | 5 which is impossible.

Lemma 2.7. The group G is not a 2-Frobenius group.

Proof. We prove that G is not a 2-Frobenius group. On the opposite, assume G be a
2-Frobenius group. Then G has a normal series 1 ⊴ H ⊴ K ⊴ G such that G/H and K

are Frobenius groups by kernels K/H and H respectively. Set |G/K| = x. Since p is an
isolated vertex of Γ(G), then π2(G) = {p} it follows that |K/H| = p. Now since |G/K|
divides |Aut(K/H)|, we deduce that |G/K| | p−1. By Lemma 1.8 we have (p−1, q−1) = 1.
Thus t | |H|, where t = q − 1 now since that H is nilpotent.So Ht ⋊ K/H is a Frobenius
group with kernel Ht and complement K/H. So |K/H| divides |Ht| − 1. It implies that
q2 + q + 1 ≤ (q − 1) − 1, but this is a contradiction.

Lemma 2.8. The group G is isomorphic to the group R.

Proof. By Lemma 2.1, p is an isolated vertex of Γ(G). Thus t(G) > 1 and G satisfies one
of the cases of Lemma 1.4. Now Lemma 2.6 and Lemma 1.3 implies that G is neither a
Frobenius group nor a 2-Frobenius group. Thus only the case (c) of Lemma 1.4 occure.
So G has a normal series 1 ⊴ H ⊴ K ⊴ G such that H and G/K are π1-groups, K/H is a
non-abelian simple group. Since p is an isolated vertex of Γ(G), we have p | |K/H|. On
the other hand, we know that 5 ∤ |G|. Thus K/H is isomorphic to one of the groups in
Lemma 1.9. Hence we consider the fllowing cases:
Step 1. If K/H ∼= 2G2(q′), where q′ = 32m+1, then by [29], π(2G2(q′)) = q′ ±

√
3q′ + 1. For

this purpose, we consider q2+q+1 = q′±
√

3q′+1. It follows that 22n+2n+1 = 3m(3m±1) as
a result 2n(2n+1) = 3m(3m±1). Since (2n, 2n+1) = 1, so we deduce 2n(2n+1) = 3m(3m+1)
and also 2n(2n + 1) = 3m(3m − 1). For this purpose if 2n = 3m + 1, then by Lemma 1.10
we deduce m = 2, n = 3. Since |2G2(243)| ∤ |G2(8)| we deduce a contradiction.The other
case is a contradiction, similarily.
Step 2. Suppose that K/H ∼= 3D4(q′), where q′ ≡ ±2 (mod 5). Then by[29], π(3D4(q′)) =
q′4 − q′2 + 1. So we consider q2 + q + 1 = q′4 − q′2 + 1, in result q(q + 1) = q′2(q′2 − 1). Now
since that (q, q + 1) = 1, so we deduce q = q′2 − 1. Now since |3D4(q′)| ∤ |G|, which is a
contradiction.
Step 3. If K/H ∼= U3(q′), where q′ ≡ ±2 (mod 5), then by [19, 29], π(U3(q′) = (q′2 −
q′ + 1)/(3, q′ + 1). If (3, q′ + 1) = 1, then we consider q2 + q + 1 = q′2 − q′ + 1 in result
q(q + 1) = q′(q′ − 1). Now since (q, q + 1) = (q′, q′ − 1) = 1, we deduce q′ = q + 1.
But |U3(q′)| ∤ |G|, where this is a contradiction. Now we assume (3, q′ + 1) = 3 then we
consider (q2 + q + 1 = q′2 − q′ + 1)/3, so 3q(q + 1) = (q′ − 2)(q′ + 1). Now we deduce that
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(q′ − 2, q′ + 1) = 3. Since (3, q′ + 1) = 3. So q′ + 1 = q + 1, q′ − 2 = 3q or q′ + 1 = 3q,
q′ −2 = q+1. First we suppose q′ +1 = 3q, q′ −2 = q+1 then we deduce q′ = q, q′ = 3q+2.
It followes q = 1, in other words 2n = 1, which this is a contradiction. Now if q′ + 1 = 3q ,
q′ − 2 = q + 1, then we have q′ = 3q − 1, q′ = q + 3. As a result q = 2 so 2n = 2 , q′ = 5
then n = 1. Now |U3(5)| ∤ |G2(2)|, which is impossible.
Step 4. If K/H ∼= L3(q′), where q′ ≡ ±2 (mod 5), then for this purpose we consider
two cases. First we assume (3, q′ − 1) = 1 then we have q2 + q + 1 = q′2 + q′ + 1. As a
result q(q + 1) = q′(q′ + 1) now since (q, q + 1) = (q′, q′ + 1) = 1 we deduce q′ = q. So
q′ = 2n. On the other hand, we know 2n ≡ 2( mod 3) hence q′ ≡ 2( mod 3), but this is
contrary, because q′ ≡ ±2( mod 5). So we have a contradiction. Now if (3, q′ −1) = 3 then
q2−q+1 = q′2+q′+1

3 . It follows that 3q2+3q+3 = q′2+q′+1. As a result 3q2+3q = q′2+q′−2
so 3q(q + 1) = (q′ − 1)(q′ + 2). Since (q′ − 1, q′ + 2) = 3, so q′ − 1 = q + 1, q′ + 2 = 3q or
q′ − 1 = 3q, q′ + 2 = q + 1. First, we suppose q′ − 1 = q + 1, q′ + 2 = 3q then we deduce
q′ = q + 2, q′ = 3q − 2. As a result we have q = 2, q′ = 4. In other words n = 1, now since
|L3(4)| ∤ |G2(2)|, so we have a contradiction. Now we consider the other case, if q′ −1 = 3q,
q′ + 2 = q + 1, then we have q′ = 3q + 1, q′ = q − 1. It followes that q = −1 or 2n = −1,
which is impossible.
Step 5. If K/H ∼= L2(q′) where q′ ≡ ±2 (mod 5), q′ = p′m then first we assume q′ be even,
then p = q′ ± 1. So we have q2 + q + 1 = q′ ± 1. First we assume q2 + q + 1 = q′ + 1 then
q(q − 1) = q′, which is a contradiction because q′ is power of p′. Now if q2 + q + 1 = q′ − 1
then q2 + q + 2 = q′. Since|L2(q′)| ∤ |G|, is a contradiction. In the way we assume q′ be
odd. First we consider p = q′, then we have q2 + q + 1 = q′, now since |L2(q′)| ∤ |G|, so we
have a contradiction. Now if p = q′±1

2 , then we have q2 + q + 1 = q′±1
2 , so q′ = 2q2 + 2q + 1

or q′ = 2q2 + 2q + 3. Since |L2(q′)| ∤ |G|, we have a contradiction.
Hence, we deduce K/H ∼= R, then |K/H| = |R|. Since p is an isolated vertex and also
p | |K/H|, so we consider q2 + q +1 = q′2 + q′ +1, then we deduce q = q′, as a result n = n′.
On the other hand, since 1 ⊴ H ⊴ K ⊴ G, we have H = 1, G = K ∼= R and the proof is
complete.
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