

Journal of Pure Mathematics

Clean Armendariz Ring

Somayyeh Razaghi

Department of Basic Science, Toloue Mehr University, Qom, 37156/63109, Iran., e-mail: razaghi_somaye@yahoo.com

Abstract

The purpose of this paper is to introduce Clean Armendariz (Cl-Armendariz) rings which are a generalization of Armendariz rings. We investigate some kind of rings such as corner ring and Polynomial rings to see which ones are Cl-Armendariz.

AMS: 16U20, 16S36,16W20.

Keywords: Clean element; Armendariz ring; Cl -Armendariz ring.

1 Introduction

Throughout this article, R denotes an associative ring with identity. For a ring R, Cl(R), Nil(R), U(R), $M_n(R)$, $T_n(R)$, Id(R), C(R) and e_{ij} denote the set of Clean element, set of Nilpotent elements in R, set of Unit elements of R, the $n \times n$ matrix ring over R, the $n \times n$ upper triangular matrix ring over R, the set of idempotent elements of R, the center of R and the matrix with (i, j)-entry 1 and elsewhere 0, respectively.

A ring R is called Armendariz if whenever polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy f(x)g(x) = 0 then $a_i b_j = 0$ for each i, j (The converse is always true). The study of Armendariz ring was initiated by Armendariz [1, Lemma1] and Rege and Chhawchharia used Nagata's method of Idealization to construct examples of both Armendariz rings and non-Armendariz rings in [12]. Some properties of Armendariz rings are given in [2]. So far Armendariz rings are generalized in several forms [5]. Zhongkui et al., [11] called a ring R weak Armendariz if whenever polynomials $f(x) = a_0 + a_1 x + \cdots + a_m x^m$, $g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$ satisfy f(x)g(x) = 0, then $a_i b_j \in Nil(R)$ for all i and j. Razaghi and Sahebi [13] called a ring R is Idempotent Armendariz ring if whenever polynomials $f(x) = a_0 + a_1 x + \cdots + a_m x^m$, $g(x) = b_0 + b_1 x + \cdots + b_n x^n \in R[x]$ satisfy f(x)g(x) = 0, then $a_i b_j \in Id(R)$ for all i and j. In this paper, we introduce Clean Armendariz (Cl-Armendariz) rings as a generalization of Armendariz rings.

2 Clean Armendariz Ring

A ring is called clean if for each element $x \in R$, x = e + u such that $e \in Id(R)$ and $u \in U(R)$.

Definition 2.1. A ring R is said to be Clean Armendariz (Cl-Armendariz) ring if whenever polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$, satisfy f(x)g(x) = 0, then $a_i b_j \in Cl(R)$ for each i, j.

It is easy to see that every clean ring is Cl-Armendariz but the following example shows that the converse does not hold in general.

Example 2.2. Let \mathbb{Z} be the ring of integers. Since \mathbb{Z} is a reduced ring, it is Cl-Armendariz but \mathbb{Z} is not clean ring.

Theorem 2.3. Let R_{α} be a ring, for each $\alpha \in I$. Then any direct product of rings $\prod_{\alpha \in I} R_{\alpha}$ is Cl-Armendariz if and only if any R_{α} is Cl-Armendariz.

Proof. Let R_{α} be Cl-Armendariz, for each $\alpha \in I$ and $R = \prod_{\alpha \in I} R_{\alpha}$. Let f(x)g(x) = 0 for some polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ where $a_i = (a_{i_1}, a_{i_2}, \ldots, a_{i_{\alpha}}, \ldots)$, $b_j = (b_{j_1}, b_{j_2}, \ldots, b_{j_{\alpha}}, \ldots)$ are elements of the product ring R for each $1 \le i \le m$ and $1 \le j \le n$. Define $f_{\alpha}(x) = \sum_{i=0}^{m} a_{i_{\alpha}} x^i$, $g_{\alpha}(x) = \sum_{j=0}^{n} b_{j_{\alpha}} x^j \in R_{\alpha}[x]$ for any $\alpha \in I$. From f(x)g(x) = 0, we have $a_0b_0 = 0$, $a_0b_1 + a_1b_0 = 0$, ..., $a_mb_n = 0$, and this implies

$$a_{0_1}b_{0_1} = a_{0_2}b_{0_2} = \dots = a_{0_{\alpha}}b_{0_{\alpha}} = \dots = 0$$

$$a_{0_1}b_{1_1} + a_{1_1}b_{0_1} = a_{0_2}b_{1_2} + a_{1_2}b_{0_2} = \dots = a_{0_{\alpha}}b_{1_{\alpha}} + a_{1_{\alpha}}b_{0_{\alpha}} = \dots = 0$$

$$a_{m_1}b_{n_1} = a_{m_2}b_{n_2} = \dots = a_{m_{\alpha}}b_{n_{\alpha}} = \dots = 0$$

This means that $f_{\alpha}(x)g_{\alpha}(x)=0$ in $R_{\alpha}[x]$, for each $\alpha\in I$. Since R_{α} is Cl-Armendariz for each $\alpha\in I$, $a_{i_{\alpha}}b_{j_{\alpha}}\in Cl(R_{\alpha})$. Now the equation $\prod_{\alpha\in I}Cl(R_{\alpha})=Cl(\prod_{\alpha\in I}R_{\alpha})$, implies that $a_{i}b_{j}\in Id(R)$, and so R is Cl-Armendariz. Conversely, assume that $R=\prod_{\alpha\in I}R_{\alpha}$ is Cl-Armendariz and $f_{\alpha}(x)g_{\alpha}(x)=0$ for some polynomials $f_{\alpha}(x)=\sum_{i=0}^{m}a_{i_{\alpha}}x^{i}$, $g_{\alpha}(x)=\sum_{j=0}^{m}b_{j_{\alpha}}x^{j}\in R_{\alpha}[x]$, with $\alpha\in I$. Define $F(x)=\sum_{i=0}^{m}a_{i}x^{i}$, $G(x)=\sum_{j=0}^{n}b_{j}x^{j}\in R[x]$, where $a_{i}=(0,\ldots,0,a_{i_{\alpha}},0,\ldots)$, $b_{j}=(0,\cdots,0,b_{j_{\alpha}},0,\ldots)\in R$. Since $f_{\alpha}(x)g_{\alpha}(x)=0$, we have F(x)G(x)=0. Since R is Cl-Armendariz, $a_{i}b_{j}\in Cl(R)$. Therefore $a_{i_{\alpha}}b_{j_{\alpha}}\in Cl(R_{\alpha})$ and so R_{α} is Cl-Armendariz for each $\alpha\in I$.

Corollary 2.4. Let R be a ring. Then R is Cl-Armendariz if and only if R[[x]] is Cl-Armendariz.

Proof. Let R be a ring. We have

$$R[[x]] \cong \{(a_i) : a_i \in R, \text{ for all } i \ge 0\} = \prod_{i>0} R.$$

Hence by this fact and Theorem 2.3, R is Cl-Armendariz if and only if R[[x]] is Cl-Armendariz.

It is clear that Armendariz ring is Cl-Armendariz but the following example shows that the converse does not hold in general.

Example 2.5. Let $\mathbb{Z}_3[x,y]$ be the polynomial ring over \mathbb{Z}_3 in commuting indeterminates x and y. Consider the ring $R = \mathbb{Z}_3[x,y]/(x^3,x^2y^2,y^3)$. The commutativity of R implies that it is Cl-Armendariz but R is not Armendariz ring by [10, Example 3.2].

Since $Nil(R) \subseteq Cl(R)$, every weak Armendariz ring is Cl-Armendariz. But the following example shows that every Cl-Armendariz is not weak-Armendariz.

Example 2.6. Let F be a Field, $R = M_2(F)$ and $R_1 = R[[t]]$. Consider the ring $S = \{\sum_{i=0}^{\infty} a_i t^i \in R_1 | a_0 \in kI \text{ for } k \in F\}$, where I is the identity Matrix. Since R is Clean, it is obvious that S is Cl-Armendariz. Now for $f(x) = e_{11}t - e_{12}tx$ and $g(x) = e_{21}t + e_{11}tx \in S[x]$, we have f(x)g(x) = 0, but $(e_{11}t)^2$ is not Nilpotent in S and so S is not weak Armendariz.

With the previous Example we can show that subring of Cl-Armendariz rings need not be Cl- Armendariz in general.

Example 2.7. Take S be the ring as in Example 2.6. We claim that S[x] is not Cl-Armendariz. Let $f(y) = e_{11}tx - e_{12}txy$ and $g(y) = e_{21}tx + e_{11}txy$ be polynomials in S[x][y]. Then f(y)g(y) = 0. We show that $(e_{11}tx)^2$ is not in Cl(S[x]). Let $(e_{11}tx)^2 = r$. If $r \in Cl(S[x])$, then r = e + u such that u is a unit in S[x]. Since S is commutative, it is Abelian and so by [7] Id(R[x]) = Id(R). Therefore e must be in S. Thus -e + r is a unit in S[x] and elementary calculation shows that this is impossible.

We can see from the previous Example the polynomial ring over Cl-Armendariz rings is not Cl-Armendariz rings in general.

Theorem 2.8. Let R be a ring. If R[x] is Cl-Armendariz ring, then R is Cl-Armendariz. The converse holds when R is reduced.

Proof. Suppose that R[x] is Cl-Armendariz ring. Let $f(y) = \sum_{i=1}^m f_i(y)$ and $g(y) = \sum_{j=1}^n g_j(y)$ be nonzero polynomials in R[y], such that f(y)g(y) = 0. Since $f_ig_j \in Cl(R[x])$ and $R \subseteq R[x]$, we have $a_ib_j \in R \cap Cl(R[x]) = Cl(R)$. Therefore, R is Cl-Armendariz. Conversely, Suppose that R be a Cl-Armendariz ring. Let $f(y) = \sum_{i=1}^m f_i(y)$, $g(y) = \sum_{j=1}^n g_j(y)$ be nonzero polynomials in R[x][y] with f(y)g(y) = 0, where $f_i = a_{i_0} + a_{i_1}x + \cdots + a_{i_{v_i}}x^{v^i}$, $g_j = b_{j_0} + b_{j_1}x + \cdots + b_{j_{w_j}}x^{w^j} \in R[x]$ for each $1 \leq i \leq m$ and $1 \leq j \leq n$. Take a positive integer t that $t = deg(f_0) + deg(f_1) + \cdots + deg(f_m) + deg(g_0) + deg(g_1) + \cdots + deg(g_n)$ where the degree is as polynomials in x and the degree of zero polynomial is taken to be zero. Then $f(x^t) = f_0 + f_1x^t + \cdots + f_mx^{t_m}$, $g(x^t) = g_0 + g_1x^t + \cdots + g_nx^{t_n} \in R[x]$ and the set of coefficients of the $f_{i'}s$ (resp $g_{j'}s$) equals the set of coefficients of the $f(x^t)$ (resp ($g(x^t)$)). Since f(y)g(y) = 0, $f(x^t)g(x^t) = 0$. Since R is Cl-Armendariz, $(a_{i_{v_i}}b_{j_{v_j}}) \in Cl(R)$ where $0 \leq r_i \leq v_i$ and $0 \leq s_j \leq w_j$, and since R is reduced, Cl(R) = Cl(R[x]). So $f_ig_j \in Cl(R[x])$. It implies that R[x] is Cl-Armendariz.

Let R be a ring and $e \in Id(R)$. Then the two-sided pierce decomposition writes R as the direct sum of eRe, eR(1-e), (1-e)Re and (1-e)R(1-e).

Proposition 2.9. Let R be a ring and $e \in Cl(R)$. Then the following statements are equivalent:

- (1) R is Cl-Armendariz.
- (2) eRe and (1-e)R(1-e) are Cl-Armendariz and R is an Abelian ring.

Proof. For convenience, we let $\bar{e} = 1 - e$. Suppose eRe and $\bar{e}R\bar{e}$ are Cl-Armendariz rings and R is Abelian. We use the pierce decomposition of the ring R and so

$$R \cong eRe \oplus eR\bar{e} \oplus \bar{e}Re \oplus \bar{e}R\bar{e}. \tag{1}$$

Now, since idempotents in R are central, $R \cong eRe \oplus \bar{e}R\bar{e}$ and so R is Cl-Armendariz ring by Theorem 2.3 . Conversely, Let R be Cl-Armendariz ring. Let $f(x) = \sum_{i=1}^m a_i x^i$, $g(x) = \sum_{j=1}^n b_j x^j \in (eRe)[x]$ such that f(x)g(x) = 0. Since R is Cl-Armendariz and $a_ib_j \in eRe \subseteq R$, then we have $a_ib_j \in Cl(R) \cap eRe = Cl(eRe)$. This means that eRe is Cl-Armendariz. Similarly we can show that $\bar{e}R\bar{e}$ is Cl-Armendariz ring. Now let e be an idempotent of R. Consider $f(x) = e - er(\bar{e})x$ and $g(x) = \bar{e} + er\bar{e}x$. Therefore f(x)g(x) = 0. By hypothesis $er\bar{e}$ is central and so $er\bar{e} = 0$. Hence er = ere for each $r \in R$. Similarly consider $p(x) = \bar{e} - \bar{e}rex$ and $q(x) = e + \bar{e}rex$ in R[x] for all $r \in R$. Then p(x)q(x) = 0. As before $\bar{e}re = 0$ and ere = re for all $r \in R$. It follows that e is central element of R, that is, R is Abelian.

Corollary 2.10. Let R be a Cl-Armendariz ring, then so is e_iRe_i for each $e_i \in Id(R)$. The converse holds if $1 = e_1 + e_2 + \cdots + e_n$ where the e_i 's, $1 \le i \le n$ are orthogonal central idempotents.

Proof. We have
$$R \cong e_1 R e_1 \oplus \cdots \oplus e_n R e_n$$
 and the proof is done.

The following Example Shows every Abelian ring is not Cl-Armendariz.

Example 2.11. Let
$$R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) | a \equiv d(mod2), b \equiv c \cong 0 (mod2) \right\}$$
. The only idempotents in R are $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, so R is an Abelian ring. Let $f(x) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -2 & 0 \end{pmatrix} x$, $g(x) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} x \in R[x]$. Then $f(x)g(x) = 0$, but $\begin{pmatrix} 0 & 0 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ is not Clean in R . Therefore R is not Cl -Armendariz.

A ring R is called right (left) principal projective (it or simply, right (left) p.p- ring) if the right (left) annihilator of an element of R is generated by an idempotent.

Theorem 2.12. Let R be a ring. If R is Armendariz ring then R is Cl-Armendariz. The converse holds if R is a right (left) p.p.-ring.

Proof. Let R be Cl-Armendariz ring and right p.p.ring. By Proposition 2.9, R is Abelian. Let $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$ are polynomials in R[x] such that f(x)g(x) = 0. Assume that f(x)g(x) = 0. So we have

$$a_0 b_0 = 0 (2)$$

$$a_0b_1 + a_1b_0 = 0 (3)$$

$$a_0b_2 + a_1b_1 + a_2b_0 = 0 (4)$$

. . .

By hypothesis there exist idempotents $e_i \in R$ such that $r(a_i) = e_i R$ for all i. So $b_0 = e_0 b_0$ and $a_0 e_0 = 0$. Multiplying (3) by e_0 from the right, we have $0 = a_0 b_1 e_0 + a_1 b_0 e_0 = a_0 e_0 b_1 + a_1 b_0 e_0 = a_1 b_0$. By (3) $a_0 b_1 = 0$ and so $b_1 = e_0 b_1$. Again, multiplying (4) by e_0 from the right, we have $0 = a_0 b_2 e_0 + a_1 b_1 e_0 + a_2 b_0 e_0 = a_1 b_1 + a_2 b_0$. Multiplying this equation by e_1 from the right, we have $0 = a_1 b_1 e_1 + a_2 b_0 e_1 = a_2 b_0$. Continuing this process, we have $a_i b_j = 0$ for all $1 \le i \le s$ and $1 \le j \le t$. Hence R is Armendariz. This completes the proof.

The following Example shows that the assumption of "p.p.-ring" in Theorem 2.12 is necessary.

Example 2.13. Let $R = T(\mathbb{Z}_8, \mathbb{Z}_8)$. Then R be Cl-Armendariz ring. It is not Armendariz ring by [12, Example 3.2]. Moreover, since the principal ideal $I = \begin{pmatrix} 0 & \mathbb{Z}_8 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} R$ is not projective, R is not a right p.p.-ring.

Since the rings $M_n(R)$ and $T_n(R)$ contain non-central idempotents. Therefore they are not Abelian and so these rings are not Cl-Armendariz in general. Given a ring R and M a (R, S)- bimodule. The Nagata extension of R by M is the ring $T(R, M) = R \oplus M$ with the usual addition and the multiplication

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2).$$

This is isomorphic to the ring of all matrices $\binom{r}{0} \binom{m}{r}$, where $r \in R$ and $m \in M$ and the usual matrix operations are used.

Proposition 2.14. Let R and S be two rings and T be the triangular ring $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ (where M is an (R, S)-bimodule). Then the rings R and S are Cl- Armendariz if and only if T is Cl- Armendariz.

Proof. Let R and S be Cl- Armendariz ring. Take ring $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ and $f(x) = \sum_{i=0}^{m} \begin{pmatrix} r_i & m_i \\ 0 & s_i \end{pmatrix}$, $g(x) = \sum_{j=0}^{n} \begin{pmatrix} r_j & m_j \\ 0 & s_j \end{pmatrix}$ satisfy f(x)g(x) = 0. Define

$$f_r(x) = \sum_{i=0}^m r_i x^i, g_r(x) = \sum_{j=0}^n r'_j x^j \in R[x]$$
 (5)

and

$$f_s(x) = \sum_{i=0}^m s_i x^i, g_s(x) = \sum_{j=0}^n s'_j x^j \in S[x]$$
 (6)

From f(x)g(x)=0, we have $f_r(x)g_r(x)=f_s(x)g_s(x)=0$ and since R and S are Cl-Armendariz ring, $r_ir'_j\in Cl(R)$ and $s_is'_j\in Cl(S)$ for each $1\leq i\leq m$ and $1\leq j\leq m$

n. It is enough to prove that $\binom{r_ir'_j}{0} r_i m'_j + m_i s'_j \in Cl(T)$. Let $a = r_i r'_j, b = s_i s'_j, m = r_i m'_j + m_i s'_j$. We consider Matrix $\binom{a \ m}{0 \ b} \in \binom{R \ M}{0 \ S}$. Since a, b are clean, a = e + u such that $e = e^2, u \in U(R)$ and b = f + v such that $f = f^2, v \in U(S)$. So $\binom{a \ m}{0 \ b} = \binom{e \ 0}{0 \ f} + \binom{u \ m}{0 \ v}$ such that $\binom{e \ 0}{0 \ f}$ is idempotent and $\binom{u \ m}{0 \ v}$ is unit in T. Conversely, let T be a Cl-Armendariz ring,

$$f_r(x) = \sum_{i=0}^m r_i x^i, g_s(x) = \sum_{j=0}^n r'_j x^j \in R[x]$$
 (7)

such that $f_r(x)g_r(x) = 0$,

$$f_s(x) = \sum_{i=0}^m s_i x^i, g_s(x) = \sum_{j=0}^n s'_j x^j \in S[x]$$
 (8)

such that $f_s(x)g_s(x)=0$. If $f(x)=\sum_{i=0}^m {r_i \atop 0 \atop s_i}, g(x)=\sum_{j=0}^n {r'_j \atop 0 \atop s'_j}\in T[x]$ then $f_r(x)g_r(x)=0$ and $f_s(x)g_s(x)=0$ follow that f(x)g(x)=0. Since T is a Cl-Armendariz ring, ${r_i \atop 0 \atop s_i} {r'_j \atop 0 \atop s'_j} = {r_i r'_j \atop 0 \atop s_i s'_j}\in Cl(T)$. This shows that R and S are Cl-Armendariz. \square

Corollary 2.15. The following are equivalent for a ring R.

- (1) A ring R is Cl- Armendariz;
- (2) The trivial extension T(R,R) of R is Cl- Armendariz;
- (3) $T_n(R)$ is Cl-Armendariz for any $n \geq 2$;
- (4) $R[x]/(x^n)$ is Cl- Armendariz where (x^n) is the ideal generated by x^n in R[x].

Proposition 2.16. Let R be a ring which 2 is invertible and $G = \{1, g\}$ be a group. Then RG is Cl-Armendariz if and only if R is Cl-Armendariz.

Proof. Since 2 is invertible, we have $RG \cong R \times R$ via the map $\theta : a + bg \to (a + b, a - b)$. Then the result follows by Theorem 2.3.

Proposition 2.17. For a ring R suppose that R/I is Cl-Armendariz for some ideal I of R. If Idempotents lift modulo I and $I \subseteq J$. Then R is Cl-Armendariz.

Proof. For convenience we let $\bar{r} = r + I$. Suppose that $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$ are polynomials in R[x] such that f(x)g(x) = 0. Then (f(x)/I)(g(x)/I) = 0. Since R/I is Cl-Armendariz, it follows that $\bar{a}_i \bar{b}_j \in Cl(R/I)$. So $\bar{a}_i \bar{b}_j = \bar{e} + \bar{u}$ such that $\bar{e} \in Id(R/I)$ and $\bar{u} \in U(R/I)$. Since every Idempotent lift modulo I and $I \subseteq J$, $a_i b_j \in Cl(R)$ for all i and j by proof of [4, Proposition6]. This complete the proof.

Acknowledgement: This paper is supported by Toloue Mehr University of Qom(TMQU). The author wants to thank the authority of TMQU for their support to complete this research.

References

- [1] S. A. Amitsur, A note on extensions of Baer and pp-rings, Canad. J. Math, 8 (1956), 355-361.
- [2] D. D. Anderson, V. Camillo, , *Armendariz rings and Gaussian rings*, Comm. Algebra. 26 (1998), no. 7, 2265-2272.
- [3] F. W. Anderson, K. R. Fuller, *Rings and catagories of modules, second edition*, Graduate Texts in Mathematics, 13 Springer-Verlag, Newyork, 1992.
- [4] J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra. 29 (2001), no. 6, 2589-2595.
- [5] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra. 30 (2002), no. 2,751-761.
- [6] P. Kanwar, A. Leroy, J. Matczuk, *Clean elements in polynomial rings*. Contemp. Math. 634(2015), 197-204.
- [7] P. Kanwar, A. leroy , J. Matczuk, *Idempotents in ring extensions*, J. Algebra. 389 (2013), 128-136.
- [8] N. K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra. 223 (2000), no.2, 477-488.
- [9] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra. 185,207-223 (2003).
- [10] T. K. Lee, T. L. Wong, On Armendariz rings, Houston J. Math. 29, No. 3, 583-593 (2003).
- [11] Z. Liu, R. Zhao, On weak Armendariz rings, Comm. Algebra. 34 (2006), no.7, 2607-2616.
- [12] M. B. Rege, S. Chhawchharia, *Armendariz rings*, Proc. Japan Acad. Ser. A, Math. Sci.73 (1997), 14-17.
- [13] S. Razaghi, SH. Sahebi, A class of ring between Armendariz and central Armendariz ring, Journal of Linear and Topological Algebra. 9. no. 2020, 301-306.