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Abstract

In this paper we consider (k̃, µ̃) almost co-Kähler manifold satisfying the vacuum
static equation. First we prove that if a (k̃, µ̃) almost co-Kähler manifold satisfies
the vacuum static equation then its scalar curvature satisfies certain relation or the
solution of the equation is trivial. Next we prove that the value of the scalar curva-
ture is constant considering the fact that the vacuum static equation has non-trivial
solution.
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1 Introduction

The study of vacuum static spaces ([25]) stands at the forefront of theoretical physics,
offering a unique and intriguing perspective on the fundamental nature of the universe.
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One of the central motivations for studying vacuum static spaces stems from their role
in advancing comprehension of general relativity, the cornerstone of modern gravitational
theory. In 1915, Albert Einstein introduced the theory of General Relativity. According
to this theory gravitational field is the spacetime curvature and its source is the energy-
momentum tensor. A spacetime( [4], [10], [14], [23]) of General Relativity is regarded as a
4-dimensional time-oriented Lorentzian manifold. The energy-momentum tensor describes
the matter content of the spacetime. The matter content is assumed to be fluid having
density, pressure and having dynamical and kinematic quantities like velocity, acceleration,
vorticity, shear and expansion( [1], [24]). The fluid is called perfect because of the absence
of heat conduction terms and stress tensor corresponding to viscosity.
The field equation governing the perfect fluid motion is Einstein’s gravitational equation

κT (X, Y ) = Ric(X, Y ) + (λ− r

2)g(X, Y ), (1)

where X, Y are smooth vector fields on M , κ is the gravitational constant and λ is the
cosmological constant. Here T is the energy-momentum tensor given by

T (X, Y ) = ρg(X, Y ) + (σ + ρ)θ(X)θ(Y ),

where ρ is the isotropic pressure, σ is the energy density and θ is the 1-form given by
θ(X) = g(X,ψ), where ψ is the velocity vector field of the fluid and g(ψ, ψ) = −1. Static
spacetimes are important global solutions to the Einstein’s equations.
Let (Mn, g) be an n-dimensional smooth Riemannian manifold. It is said to be a static
space with perfect fluid if there exists a non-trivial smooth function f : M → R such that

Ddf − f(Ric− r

n− 1g) = 1
n

( r

n− 1 + △f)g, (2)

where Ddf is the Hessian of f , △ is the negative Laplacian of f , Ric is the Ricci tensor and
r is the scalar curvature. If the static space additionally satisfies the property r

n−1 +△f = 0
then it is termed as vacuum static space. For a vacuum static space (1.2) takes the form

Ddf − f(Ric− r

n− 1g) = 0, (3)

and this equation is called vacuum static equation. the exploration of vacuum static spaces
has been a significant area of interest in theoretical physics and Mathematics particularly
within the context of general relativity. Many Researchers have engaged in extensive studies
to comprehend the theoretical implications and physical consequences of vacuum static
solutions to Einstein’s field equations. Recently Hawan and Yun([15]) consider vacuum
static spaces with the complete divergence of the Bach tensor and Weyl tensor. Other
interesting works in this regard can be found in [8], [12], [17], [22]. Motivated by the works
of D. S. Patra et al.([3]) here we study vacuum static space on (k̃, µ̃) almost co-Kähler
manifold.
The paper is organized as follows. after the introduction in section 1, in section 2, we give
some preliminaries and formulas of (k̃, µ̃) almost co-Kähler manifold and of vacuum static
spaces. In section 3, we prove certain results on (k̃, µ̃) almost co-Kähler manifold satisfying
vacuum static equation.
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2 Preliminaries

This section consists of some basic definitions and properties of almost contact metric man-
ifolds. A (2n+1)- dimensional smooth Riemannian manifold (M2n+1, g) is said to be almost
contact metric manifold if there exist on M a (1, 1) tensor field φ, a 1-form η and a vector
field ξ such that

φ2X = −X + η(X)ξ, φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1, (4)

for any smooth vector field X on M . In an almost contact metric manifold we also have

g(φX,φY ) = g(X, Y ) − η(X)η(Y ), (5)

for all smooth vector fields X, Y on M .The fundamental 2-form Φ is given by Φ(X, Y ) =
g(X,φY ). An almost contact metric manifold is said to be almost co-Kähler manifold (
[2],[5], [6], [13], [16]) if dθ = 0 and dΦ = 0. An almost co-Kähler manifold is said to be
normal if and only if

N (1)(X, Y ) = Nφ(X, Y ) + 2dη(X, Y )ξ = 0, (6)

for any smooth vector fields X, Y in M , where Nφ denotes the Nijenhuis torson of φ, given
by

Nφ(X, Y ) = φ2[X, Y ] + [φX,φY ] − φ[φX, Y ] − φ[X,φY ]. (7)

A normal almost co-Kähler manifold is a co-Kähler manifold. On an almost co-Kähler
manifold we consider three self adjoint operators

h = 1
2£ξφ, l = R(., ξ)ξ, h′ = h ◦ φ

where R is the Riemann curvature tensor of g. These three operators satisfy the following
identities([18], [19], [21]):

trh = trh′ = 0, hξ = 0, h′ = −φh, (8)

∇ξ = h′, ∇ξφ = 0, ∇ξh = −h2φ− φl, (9)

Ric(ξ, ξ) + trh2 = 0, (10)

φlφ− l = 2h2. (11)

where ∇ is the Levi-Civita connection of g. The Ricci operator Q is given by Ric(X, Y ) =
g(QX, Y ).
If the curvature tensor R of an almost co-Kähler manifold satisfies

R(X, Y )ξ = k̃(η(Y )X − η(X)Y ) + µ̃(η(Y )hX − η(X)hY ), (12)
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foe all smooth vector fields X, Y on M and k̃, µ̃ ∈ R then it is called (k̃, µ̃)-Almost co-Kähler
manifold. Using (11) and (12) we have

h2 = k̃φ2. (13)

In (k̃, µ̃)-Almost co-Kähler manifold we have the following identities([20]):

∇ξh = µ̃h′ (14)

∇ξh
2 = 0, (15)

lφ− φl = 2µ̃h′. (16)

Furthermore, in this manifold the tensor field h satisfies the following relation([11]):

(∇Xh)Y − (∇Y h)X =k̃(η(Y )φX − η(X)φY + 2g(φX, Y )ξ)
+ µ̃(η(Y )φhX − η(X)φhY ),

(17)

where X and Y are smooth vector fields on M. The Ricci operator Q of an almost co-Kähler
manifold with k̃ < 0 is given by ([9])

Q(Z) = µ̃h(Z) + 2nk̃η(Z)ξ (18)

for all smooth vector field Z on M.

Lemma 2.1. ([7], [12]) If a Riemannian metric g satisfies the vacuum static equation,
then its scalar curvature is constant.

In a (2n + 1)-dimensional almost co-Kähler manifold the vacuum static equation (3)
can be written as

∇XDf = f{QX − r

2nX}, (19)

where D is the gradient operator and X is any smooth vector field on M .
Differentiating (19) covariantly along an arbitrary vector field Y we obtain

∇Y ∇XDf = (Y f){QX − r

2nX} + f{(∇YQ)X +Q(∇YX) − r

2n∇YX}. (20)

Using the equation (20) in the curvature formula R(X, Y )Z = ∇X∇YZ−∇Y ∇XZ−∇[X,Y ]Z

yields

R(X, Y )Df = (Xf)QY − (Y f)QX + f{(∇XQ)Y − (∇YQ)X}

− r

2n{(Xf)Y − (Y f)X},
(21)

for all smooth vector fields X, Y and Z on M .
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3 Vacuum static equation in a (k̃, µ̃) almost co-kähler
manifold

In this section we consider (k̃, µ̃) almost co-Kähler manifold satisfying vacuum static equa-
tion. Here we consider the case h ̸= 0 and prove the following:

Theorem 3.1. If a proper (k̃, µ̃) almost co-Kähler manifold with k̃ < 0, r ̸= 2n(2n + 1)k̃
satisfies the vacuum static equation then either the scalar curvature r satisfies {(2n+1)k̃−
r

2n
)2 + µ̃2k̃} = 0, or the equation cannot have any non-trivial solution.

Proof. In a (k̃, µ̃) almost co-Kähler manifold we have

R(X, Y )ξ = k̃(η(Y )X − η(X)Y ) + µ̃(η(Y )hX − η(X)hY ) (22)

Taking inner product of both side of (22) with Df

g(R(X, Y )ξ,Df) = k̃(η(Y )Xf − η(X)Y f) + µ̃(η(Y )(hX)f − η(X)(hY )f) (23)

Substituting X = ξ in (23) we obtain

g(R(ξ, Y )ξ,Df) = k̃(η(Y )ξf − Y f) − µ̃((hY )f) (24)

Now consider (21)

R(X, Y )Df =(Xf)QY − (Y f)QX + f{(∇XQ)Y − (∇YQ)X}

− r

2n{(Xf)Y − (Y f)X}
(25)

Taking inner product with ξ in both side of (25) we obtain

g(R(X, Y )Df, ξ) =2nk̃((Xf)η(Y ) − (Y f)η(X)) − r

2n((Xf)η(Y ) − (Y f)η(X))

+ f{g((∇XQ)ξ, Y ) − g((∇YQ)ξ,X)}
(26)

Using (19) and (17) in (26) we get

g(R(X, Y )Df, ξ) = (2nk̃ − r

2n)((Xf)η(Y ) − (Y f)η(X)) − 2fg(X,φY ) (27)

Putting X = ξ in the previous equation we obtain

g(R(ξ, Y )ξ,Df) = ( r2n − 2nk̃)((ξf)η(Y ) − (Y f)) (28)

Using of (23) and (28) gives us

( r2n − 2nk̃){(ξf)η(Y ) − (Y f)} = k̃{η(Y )(ξf) − Y f} − µ̃{(hY )f} (29)

From (29) we can write

{(2n+ 1)k̃ − r

2n}{Df − (ξf)ξ} + µ̃hDf = 0. (30)
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Operating h in both side of (30) we get

{(2n+ 1)k̃ − r

2n}hDf + µ̃h2Df = 0. (31)

From which we have

hDf = − µ̃h2Df

(2n+ 1)k̃ − r
2n

. (32)

Utilizing (13) and (32) in (30) we have

{(2n+ 1)k̃ − r

2n}2(Df − (ξf)ξ) − µ̃2k̃φ2Df = 0. (33)

The equation (33) can be written as

{(2n+ 1)k̃ − r

2n)2 + µ̃2k̃}(Df − (ξf)ξ) = 0. (34)

Then either {(2n+ 1)k̃ − r
2n

)2 + µ̃2k̃} = 0 or, (Df − (ξf)ξ) = 0.

If (Df − (ξf)ξ) = 0 then

Df = (ξf)ξ. (35)

Differentiating covariantly (35) with respect to X we get

∇XDf = X(ξf)ξ + ξfh′(X). (36)

Using (19) and (36) we have

fQX = rf

2nX +X(ξf)ξ + ξfh′(X). (37)

Now from the relation g(∇XDf, Y ) = g(∇YDf,X) we get

X(ξf) = ξ(ξf)η(X). (38)

and from ∇XDf = f(QX) − rf
2n
X we have

ξ(ξf) = 2nk̃f − rf

2n. (39)

Using (37), (38) (39) we obtain

fQX = rf

2nX + 2nk̃f − rf

2nη(X)ξ + ξfh′(X). (40)

Taking trace of the foregoing equation we obtain

f = 0.

This completes the proof.
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Now we consider the case h = 0. Then from (12) we have

R(X, Y )ξ = k̃(η(Y )X − η(X)Y ), (41)

for all smooth vector fields X, Y on M.

Taking inner product with Df in (41) and replacing X = ξ we get

g(R(ξ, Y )ξ,Df) = k̃(η(Y )ξf − Y f). (42)

From equation (21) we get

R(X, Y )Df = (Xf)QY − (Y f)QX + f{(∇XQ)Y − (∇YQ)X}

− r

2n{(Xf)Y − (Y f)X} (43)

Taking inner product with ξ in both side of (43) we obtain

g(R(X, Y )Df, ξ) =2nk̃{(Xf)η(Y ) − (Y f)η(X)} − r

2n{(Xf)η(Y ) − (Y f)η(X)}

+ f{g((∇XQ)ξ, Y ) − g((∇YQ)ξ,X)}
(44)

Using (19) and (17) in (44) we get

g(R(X, Y )Df, ξ) = (2nk̃ − r

2n)((Xf)η(Y ) − (Y f)η(X)) − 2fg(X,φY ) (45)

Putting X = ξ in the previous equation we obtain

g(R(ξ, Y )ξ,Df) = ( r2n − 2nk̃)((ξf)η(Y ) − (Y f)) (46)

Now (42) and (46) together imply

( r2n − 2nk̃)((ξf)η(Y ) − (Y f)) = k̃(η(Y )ξf − Y f) (47)

From the foregoing equation we obtain

((ξf)η(Y ) − Y (f)){(2n+ 1)k̃ − r

2n} = 0. (48)

Suppose that r ̸= 2n(2n+ 1)k̃.
Then from (ξf)η(Y ) − Y (f) = 0 we have Df − ξfξ = 0.
Differentiating covariantly Df − (ξf)ξ = 0 with respect to X we get

∇XDf = X(ξf)ξ. (49)

Using (19) and (49) we have

fQX = rf

2nX +X(ξf)ξ. (50)

Now from the relation g(∇XDf, Y ) = g(∇YDf,X) we get

X(ξf) = ξ(ξf)η(X). (51)
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and from ∇XDf = f(QX) − rf
2n
X we have

ξ(ξf) = 2nk̃f − rf

2n. (52)

Using (50), (51), (52) we obtain

fQX = rf

2nX + 2nk̃f − rf

2nη(X)ξ. (53)

Taking trace of the foregoing equation and noting that k̃ < 0 we obtain

f = 0.

Therefore, we are in a position to state the following:

Theorem 3.2. Let (M2n+1, g) be a proper (k̃, µ̃) almost co-Kähler manifold with h = 0. If
(g, f) is a non-trivial solution of the vacuum static equation, then the scalar curvature of
M is 2n(2n+ 1)k̃, which is constant.
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