

ON A PAIR OF GENERATING RELATIONS FOR SOME SPECIAL FUNCTIONS FROM THE VIEW OF LIE-ALGEBRA

ASIT KUMAR CHONGDAR

1. **Introduction :** Starting from the infinitesimal operators R and L , the elements of Lie-algebra for a particular special function, which raise and lower the indices of the special function, we can generate the finite operators $(\exp a R)$, $(\exp b L)$ of the corresponding Lie-group. Now since any element of the said Lie-group operates on the function in the following ways :

- (i) it shifts the argument of the function
- (ii) it produces an infinite sum of functions with unchanged arguments but with shifted indices,

the desired generating function can be obtained by equating the two results.

The composition law

$$(\exp aR)(\exp bL) = \exp(aR + bL)$$

will hold or not according as R , L commute or not. In case when $[R, L] \neq 0$, we shall operate $(\exp aR)(\exp bL)$ and $(\exp bL)(\exp aR)$ successively on the function concerned in order to derive a pair of generating relations for the function. This method was already suggested by S. K. Chatterjea [1].

The object of the present paper is to follow the method of Chatterjea in order to derive a pair of generating relations for the Laguerre and Bessel polynomials separately from a different view point.

2. **Laguerre polynomials :** From the second order differential equation

$$x D^2 y + (1 + \alpha - x) D y + n y = 0, \quad (D = d/dx)$$

for the Laguerre polynomials, we notice that

$$(2.1) \quad R [L_n^{(\alpha)}(x) y^\alpha] = -L_n^{(\alpha+1)}(x) y^{\alpha+1}$$

$$L [L_n^{(\alpha)}(x) y^\alpha] = (n + \alpha) L_n^{(\alpha-1)}(x) y^{\alpha-1},$$

where

$$(2.2) \quad R = y \frac{\partial}{\partial x} - y, \quad L = x y^{-1} \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$$

and $[R, L] = 1$ i.e., $[R, L] \neq 0$,

We shall now apply the operator $(\exp aR)$ $(\exp bL)$ to $(L_n^{(\alpha)}(x) y^\alpha)$.

We have

$$(2.3) \quad (\exp aR) f(x, y) = f(x + ay, y)$$

$$(2.4) \quad (\exp bL) f(x, y) = e^{-ay} f\left(\frac{x(y+b)}{y}, y+b\right).$$

Thus we get

$$(\exp aR) (\exp bL) (L_n^{(\alpha)}(x) y^\alpha) = e^{-ay} (y+b)^\alpha L_n^{(\alpha)}\left(\frac{(x+ay)(y+b)}{y}\right).$$

On the other hand,

$$(\exp aR) (\exp bL) (L_n^{(\alpha)}(x) y^\alpha)$$

$$= \sum_{m=0}^{\infty} \frac{(-ay)^m}{m!} \sum_{p=0}^{\infty} \frac{b^p}{p!} (n+\alpha-p+1)_p y^{\alpha-p} L_n^{(\alpha-p+m)}(x).$$

Equating the above two results we get

$$(2.5) \quad \sum_{m=0}^{\infty} \frac{(-ay)^m}{m!} \sum_{p=0}^{\infty} \frac{b^p}{p!} (n+\alpha-p+1)_p y^{\alpha-p} L_n^{(\alpha-p+m)}(x)$$

$$= e^{-ay} (y+b)^\alpha L_n^{(\alpha)}\left(\frac{(x+ay)(y+b)}{y}\right).$$

Next we shall apply the operator $(\exp bL)$ $(\exp aR)$ to $(L_n^{(\alpha)}(x) y^\alpha)$.

First we observe that

$$(\exp bL) (\exp aR) (L_n^{(\alpha)}(x) y^\alpha) = e^{-a(y+b)} (y+b)^\alpha L_n^{(\alpha)}\left(\frac{(x+ay)(y+b)}{y}\right).$$

On the other hand,

$$(\exp bL) (\exp aR) (L_n^{(\alpha)}(x) y^\alpha)$$

$$= \sum_{m=0}^{\infty} \frac{(-ay)^m}{m!} \sum_{p=0}^{\infty} \frac{b^p}{p!} (n+\alpha+m-p+1)_p y^{\alpha-p} L_n^{(\alpha+m-p)}(x).$$

Equating the above two results we get

$$(2.6) \quad \sum_{m=0}^{\infty} \frac{(-ay)^m}{m!} \sum_{p=0}^{\infty} \frac{b^p}{p!} (n+\alpha+m-p+1)_p y^{\alpha-p} L_n^{(\alpha+m-p)}(x)$$

$$= e^{-a(y+b)} (y+b)^\alpha L_n^{(\alpha)}\left(\frac{(x+ay)(y+b)}{y}\right).$$

It is interesting to remark that in particular when $b=0$, both the relations (2.5) and (2.6) reduce to the well-known generating relation [2, p. 373] :

$$(2.7) \quad \sum_{m=0}^{\infty} \frac{y^m}{m!} L_n^{(\alpha+m)}(x) = e^y L_n^{(\alpha)}(x-y).$$

Thus the pair of generating relations (2.5) and (2.6) can be considered as the extension of (2.7).

Bessel Polynomials : From the second order differential equation :

$$x^2 D^2 y + (\alpha x + \beta) D y - n(n + \alpha - 1)y = 0$$

for the Bessel polynomials, we notice that [3] :

$$(3.1) \quad R = xy \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y} + (n-1)y, \quad L = \frac{x^2}{y} \frac{\partial}{\partial x} - \frac{nx - \beta}{y}$$

and $[R, L] = -\beta$ i.e. $[R, L] \neq 0$,

such that,

$$(3.2) \quad R(Y_n^{(\alpha)}(x)y^\alpha) = (n + \alpha - 1)Y_n^{(\alpha+1)}(x)y^{\alpha+1},$$

$$L(Y_n^{(\alpha)}(x)y^\alpha) = \beta Y_n^{(\alpha-1)}(x)y^{\alpha-1}.$$

We shall apply the operator $(\exp aR)$ $(\exp bL)$ to $(Y_n^{(\alpha)}(x)y^\alpha)$.

We have

$$(3.3) \quad (\exp aR) f(x, y) = (1-ay)^{-n+1} f(x/(1-ay), y/(1-ay))$$

$$(3.4) \quad (\exp bL) f(x, y) = \left(1-b\frac{x}{y}\right)^n e^{b\beta/y} f\left(\frac{xy}{y-bx}, y\right).$$

Thus we get,

$$(\exp aR) (\exp bL) (Y_n^{(\alpha)}(x)y^\alpha)$$

$$= (1-ay)^{1-\alpha-n} (y-bx)^n y^{\alpha-n} e^{b\beta(1-ay)/y} Y_n^{(\alpha)}\left(\frac{xy}{(y-bx)(1-ay)}\right).$$

On the other hand

$$(\exp aR) (\exp bL) (Y_n^{(\alpha)}(x)y^\alpha)$$

$$= \sum_{p=0}^{\infty} \sum_{m=0}^{\infty} \frac{(b\beta)^p}{p!} \frac{a^m}{m!} (n+\alpha-p-1)_m Y_n^{(\alpha-p+m)}(x) y^{\alpha-p+m}.$$

Equating the above two results we get,

$$(3.5) \quad (1-ay)^{1-\alpha-n} (y-bx)^n e^{b\beta(1-\alpha)y/y} Y_n^{(\alpha)} (xy/(y-bx) (1-ay)) \\ = \sum_{p=0}^{\infty} \sum_{m=0}^{\infty} \frac{(b\beta)^p}{p!} \frac{a^m}{m!} (n+\alpha-p-1)_m Y_n^{(\alpha-p+m)} (x) y^{\alpha-p+m}.$$

Now we shall apply the operator $(\exp bL) (\exp aR)$ to $(Y_n^{(\alpha)} (x) y^\alpha)$.

First we observe that

$$(\exp bL) (\exp aR) (Y_n^{(\alpha)} (x) y^\alpha) \\ = (1-ay)^{1-\alpha-n} (y-bx)^n y^{\alpha-n} e^{b\beta y/y} Y_n^{(\alpha)} (xy/(1-ay) (y-bx))$$

On the other hand

$$(\exp bL) (\exp aR) (Y_n^{(\alpha)} (x) y^\alpha) \\ = \sum_{m=0}^{\infty} \sum_{p=0}^{\infty} \frac{a^m}{m!} \frac{(b\beta)^p}{p!} (n+\alpha-1)_m Y_n^{(\alpha+m-p)} (x) y^{\alpha+m-p}.$$

Equating the above two results we get,

$$(3.6) \quad (y-bx)^n (1-ay)^{1-\alpha-n} e^{b\beta y/y} Y_n^{(\alpha)} (xy/(1-ay) (y-bx)) \\ = \sum_{p=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^m}{m!} \frac{(b\beta)^p}{p!} (n+\alpha-1)_m Y_n^{(\alpha+m-p)} (x) y^{m+n-p}.$$

Notice that in particular when $b=0$, both the relations (3.5) and (3.6) reduce to the well known generating relation [4, p 50]

$$(3.7) \quad (1-y)^{1-\alpha-n} Y_n^{(\alpha)} \left(\frac{x}{1-y} \right) = \sum_{m=0}^{\infty} \frac{(n+\alpha-1)_m}{m!} Y_n^{(\alpha+m)} (x) y^m.$$

Thus the pair of generating relations (3.5) and (3.6) can be considered as the extension of (3.7).

I am thankful to Dr. S. K. Chatterjea for his constant encouragement.

REFERENCES

[1] Chatterjea, S. K.—On a pair of generating relations for the special functions from the view point of Lie-algebra, Comptes rendus de l' Académie bulgare des sciences, Tome 27, No 1, 1974, 11-14.

- [2] Chatterjea, S. K.—Group theoretic origins of certain generating functions of Laguerre polynomials, *Bulletine of the Institute of Mathematics, Academia Sinica*, 3(2), 1975, 369-375.
- [3] Chen, Ming-Po and Feng Chia Chin—Group theoretic origins of certain generating functions of generalised Bessel Polynomials, *Tamkang Journal of Mathematics*, 6 (1975), 87-93.
- [4] Grosswald, E.—*Bessel polynomials*, Springer Verlag, Berlin (1978).

Received

18. 4. 1982

Dept. of Pure Math.
Calcutta University