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ON THE MAXIMUM TERMS OF THE DERIVATIVES OF ENTIRE 

FUNCTIONS IN SEVERAL COMPLEX VARIABLES REPRESENTED 

BY MULTIPLE DIRICHLET SERIES. 

B. C. Chakraborty and Md. Muklesur Rahman 

Abstract: A family F of entire functions in several complex variables represented by 
a multiple Dirichlet series has been considered. Hadamard multiplication and the concept 
of rank of a maximum term of any function f e F have been introcuced. Partial derivatives 
of any order of two different functions are considered and a few inequalities involving 
their maximum terms and ranks have been obtained in R", real n-space. After removing 
the set of discontinuities of the rank from R", the special forms and the consequences of 
the above inequalities are also obtained. 

1. Notations: We denote complex and real n-space by Ch and R respectively and the 
set of non-negative integers by 1, so that I will denote the Cartesian product of n 

copies of I. We indicate the points ( SySa ). ( Os ..,a ), ( Mi.. ...m, ) etc. of Ch 

or R by their corresponding unsuffixed symbols s, o, m respectively and make use of 
the standard notations of the single variable which are easy to understand from 
context. 

For s, w e C and < eC where s (S,-...,S.), W=( W..on, Wa) 
we define 

i) Sw iff s, = Wj, i=l,...,n 

ii) s+W= (S,+W...S, +Wa ), 

ii)S = (< Szp.. S) 

iv) S.w=s,W+... +S,Wn 

v) + | s. 12 12 

For a e R, s e C" 
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vi) S-a ( S1t-a,.... S ta) 
Also for x,y « R", we say that 

vii) xSy iff x<Vi i1.n Moo JA Viii) x< y iff x<y but xAy RI1191 
ix) x <<y iff xi <Yi, i=,.,n 
ne positive hyperoctant R" in R" will be Vnodesbdd 
R"={x:xe R", X0, i1,. n. For t e R 
We set lt=t+... -t, and for me l", m! = m,l..ma! ia 202ad b 
Also for se C, te R", we shall denote by by Poie 

S 

wed 9 nobonur yao os 
s,(s1 even if s,-O). For k e R, k will denote the real n-tuple -*enpK).For an 

Il k Il 
f booiedo naeu evord ealnc 

k k, where ke h and 
entire function f with domain C, f will denote the function 

baisao osl 
09:*a nen OSn pnaevedncl 

fOf. 
An unorthodox 

bos 
notation : In the definition of a multiple Dirichlet series we take n 

o Jub 

bns wofonos 

= I,.....n of exponents.rd oreoibni y 

elodmya beiiluenu pabnoqeottoo 
feris yd 8 sequences m 

m= 

We shall often require the n-tuple (A tme . Anm) of those sequences. For brevity We 

denote this n-tuple by ( Anm ) . Also, for a particular set of values of m .mn, say 

ben 
will be denoted by (Anp) Thus, 

p (P1 ,......Pa), the n-tuple ( p . Anp 

s. Anm )will mean si Ajm, t...+ n n 

2. We consider an entire function in C" represented by the multiple Dirichlet series 

( 
we m 

f, S,-.. ... Sp)= 2"1.n exp ( SiAim ... +S,A, m,) 
m. .,mn= 

S i. e. 

(2. 1.) f, (s)- am exp s. ( Anm, where 
m=l 
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bo Ra s=o+ in C(j = ,....n), a c C andam, 
m= I 

are n sequences of exponents satisfying the conditions 
gn dolt 

(2. 2) 0< M<A < < as k o, for j-,...Throughout we 

tacitly assume that n 
lim log m= 0. ,= 1, .. 

AS)e 
(2 3) rs of prbnoe no0 

m-c 

A. 1. Janusauskas [ 2] had shown that if (2. 3) holds then the domain of 

convergence of the series ( 2. 1 ) coincides with its domain of absol ute conver-

gence. 
Let F be the family of all entire functions represented by a series of the form 

l 2.1) having the same sequences of exponents m. ' i=l,...n) 
m=I 

and satisfying the condition (2.2). 

n For fu fa F, we define f = f, f by 

(2. 4) f(s) = f, (s) *f ( s ) = Eab exps. (Am) where 
m=I 

(2 5) f(S) =_ am exp. (an) and 
m= 

botoneb ad amet mumbrim ovio co 

(2. 6) f, (s)= bm expS. ( Anm 
m=I 

Throughout this paper f will denote the product function f,"f, as given in ( 2.4 ) 

Theorem 1. The function f, as defined by ( 2.4), belongs to F. 

Proof: Since (2.5) is entire, the series am| expa. ( Aam)is convergent m=l 
bne vlovit 

for all o e R". In particular, it is convergent at a 0, so that la I is 
m=l 

| am=0 and hence the n-sequence | am h is convergent. Thus, lim 
m>0 

co MA 
bounded. Also the series 2 | bm| exp o. ( Anm) is convergent for all a e R" 

m=l 
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and consequently 2 amba exp o. (Aam) is convergent for all a e 
m 

wnich implies am bm Oxps. ( Anm )is absolutely convergent for all s e Co 
m-

Hence ( 2.4 ) represents an entire function and f« F. 

Corresponding to any fe F we define the functions: the maximum modulus 
M(o, f1 ), the maximum term ( o, f, ) and the indices vy (o, f) of the maxim um 

term (o, f, ), ( j = Ig... n ) on Ra by M( o, f) = max f (s) I 
Re s O 

A(o, f,)= max [| ami expa. ( Anm ) me l 

o, )= max [ m,: | am exp a. Aam 1 = e( o, )1.j = \,.sosapDie 

We ca.l= v( o, f,) = ( ih. )as the rank of the maximum term (o, fi ). It is 
shown in theorem I that tne series (2.4) belongs to F. Consequently, for K cP, 

f (s) = (f (s)* f,(s)) (Anm)*a, bm expS. Am)and f (s) = fi (s) * f (s) 
k 

k 

m=| 

Aam) 2* am bn exp s. (Anm are also elements of F. 

m=I D n 

K 
Let M ( o, k ), M* ( o, k) be the maximum modulii of f* and f respectively and their 

respective maximum terms be denoted by e ( o, k) and * (o, k). Theen, 

( o, k) _ max [( Aam)Im I expo ( 
me 

(o, k) max [( Am) *| am bm| expo. (Aam) 
m el 

Also let v =vy (o, k), and v = v*( o, k ).j = l,.., n, be the indices of ( o. k) 

and u (o, k) respectively and y v( 6, k) = (n ,.. Va), v = y* (o, k) = 

( ,*) be their respective ranks. iboient 

Theorem 2. For O<0<<{ and k e ", 

M (o, k)sK!M* (E,Õ) 
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Proof: By Cauchy's integral formula 

alkI f(s) dw, f(w dw, ..dW, 
(21) (W-s) 

8s ds, 

where C = Cix x C, Ci:I W,- SI = 6-oui =, n 

k 
f (S) k M(, O) 

(-a) 
Hence, 

Since M(o, Ö) = M* ( o, 0) for all oe Re, the theorem follows. 

Theorem 3. For any a e Ra and k e I, 

(Aap (, 8 < (la" 

where p = ( Di.....Pa ) is a position of occurrence of (o, k ) and* (o, k) is th 

rank of (o, k). 

Proof: Let ( a, k) occur at a position p =( Pu Pa) and * (o, k) occur a 

p-(PrP).Then, 

# ( o, K) = (Aap ) | a, b, I exp o-( Aap ) 

(Aape 1,, b,. exp. (e) 

Hence, (Aape ), Evidently p . Due to ( 2.2 ) we have, 

(3. 1) (o,k < (Ap* benits o, k ) 

Again, (o, k ) = ( Aepe )e* | a,, b," 1 expoAae) 

>(Aap) | a, b, I expfa. Anp )} = ( Aan ) u ( o, k ). Hence, 

(3. 2) (ap)* (G, k) (o, k) 

Combining (3.1 ) and ( 3.2 ) the theorem follows. 
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Theorem 4 For any k>>0 and a e R" 

14 Anq G, K 
o, k-I) 

where q = ( . n) is a position of occurrence of a, k-I ) and 
P ..,Vn) is the rank of ( o, k ), 

Proof: Let (o, K ) occur at p ( Pi, .....Pa). Then, 

o, k-I ) =( Ang ) k-| a, bg l exp ( 

( Aap)*I|a, b, I exp . (Aa) p 
ua, k) 

....Anp 
Hence, 

(3. 3) a, k) 
o, k-I ) Ap1 Appn <p..An Vn: 

Again o, k)(na) )a, b | exp na) 
Alq1. Ana, u ( a, k-l ) . Hence, 

(3. 4) Alq1-Anan o, k) A1q1Angn a(, k-I) combining ( 3. 3) and (3. 4) the theorem follows 

Theorem 5. For any kO and a e R", 

, k)-A1q1.Anan" u (o, k-l 

where. q* = (91...., qn) is a position of occurrence of u* ( o, k-I ) and * = 

(v,., V*) is the rank of u* (o, k). 
Proof: The proof is exactly similar to that of theorem 4. 
For any f e F, let D be the set of all discontinuities of v in R, where v= ( y 

is the rank of the maximum term ( a, f,). Also let S denote the set of all o e R 
at which u ( o, f, ) is attained by more than one term of the series 

(4. 1) a exp.nm,) 
m=l 

R. K. Das [1] had shown that D and S are identical. (A similar result for entire 

functions represented by multiple power series was proved by J. G. Krishna (3 

Hence for de R"-D, u ( o, fh) is attained by only one term of the series (4. 1) and 

the position of that term isv (rs Vn )odh (S.e b 
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Hence in such a case, the theorems 3,4 and 5 will take the following forms in 

theorems 6, 7 and 8 respoctively. 

Theorem 6. For any ac R" - D and k e P, 

(4. 2) (Ay) < A) 

where y and are the ranks of u and " respectively and D is the set of all discon-

tinuities of v( o,k ) in R, 

Theorem 7 For any a e R"- D, and k>>Q, 

(4.3) A o, kl ) ... , v, ( o, k-1) < K ( a, k) .hn Va ( a, k ), 

where D, is the set of all discontinuities ofr( o, k-I ) 

Corollaries: For any de R".D, , 

i) ( o, 0) .A Va ( a, 0) < Av, (7, T) ... Aarn (o, 1) ..) 

i) (o, 1) (a,2) 
a, O) (o,1) 

ii) Putting k-1, 2,.osouos D SUCcessively in ( 4.3 ) and multiplying the resulting p 

inequalities and using (1) we have, 

An ( a, 0 )...A,v. ( a, j) < (o,D u (o, Oy <hu (o, ) **A, Vn (o, D). 

Theorem 8 For any a e R" - D, and k0 

(4.4) o,kA) "2, .(o, ki)<l kTy< (ok)'"a, i (a, k) 
where D, is the set of all discontinuities of (o, k-I ). 

Corollaries: For any a cR"-D, 

i)A(o, 0) * A,v. ( o,0) < Av ( o,1) " A,v.( o, 1) <. 

ii) (o, 1) (a,2) 
p (o, O) (a,T) 
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iil) 1 

(g, P Vo,D ) ... 4o,O ) 
A v (o, O)An V ( o,0) 

opTheorem 9. For any o e R - DUD, and kel (k> O ), se 

An V (, P) 

A V o, K-I) A Va ( G, K-l) < 
ok)KFT AVa, k) 4o, k-) 

.AnVa (o, k), 
iunitnc bib 

where D is the set of all dicontinuities of v ( a, K Jand D, is the set of ali disconti 

nuities of v (o, k-). 
Proof From (4.2), using (4.3) , we have 

S 
4(o, k <u( o, R) (A,v* ( o, k) 
A( o, K-)A » ( o, K).-A,v* (o, K) (A,v,"( o, K)) 
Hence, Boieiahumm bon fCATylviees T 

(4.5) u* ( o, K) (4.5) G An ( o, K):** A,va ( o, K ) (A,v" ( o, k) 
o, k-I) 

k 
Again, from (4. 2), * ( o, K) >( o, K) (Aa v (a, k)n (o, R-1)* 

K. AVilo, k-1).. An Va (o. K-l) (Aa v (o, k) 

Hence, fy to eeltiur tooo b ile to pee orh eto 

K 
(4. 6) ( G) ) Av, ( o, k-I ) Anva ( o, k-1 ) ( Aav (o, k ). o,K) 

(o, K-

From (4.5 ) and (4.6 ), using ( 4.2) and the Corollary () of theorem 7, the result 

follows. The second author wishes to express his gratitude to the Govt. of India 

for awarding him a scholarship. 

To) 
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