

ON THE MAXIMUM TERMS OF THE DERIVATIVES OF ENTIRE FUNCTIONS IN SEVERAL COMPLEX VARIABLES REPRESENTED BY MULTIPLE DIRICHLET SERIES.

B. C. Chakraborty and Md. Muklesur Rahman

Abstract : A family F of entire functions in several complex variables represented by a multiple Dirichlet series has been considered. Hadamard multiplication and the concept of rank of a maximum term of any function $f_1 \in F$ have been introduced. Partial derivatives of any order of two different functions are considered and a few inequalities involving their maximum terms and ranks have been obtained in R^n , real n -space. After removing the set of discontinuities of the rank from R^n , the special forms and the consequences of the above inequalities are also obtained.

1. Notations : We denote complex and real n -space by C^n and R^n respectively and the set of non-negative integers by I , so that I^n will denote the Cartesian product of n copies of I . We indicate the points (s_1, \dots, s_n) , $(\sigma_1, \dots, \sigma_n)$, (m_1, \dots, m_n) etc. of C^n or R^n by their corresponding unsuffixed symbols s , σ , m respectively and make use of the standard notations of the single variable which are easy to understand from the context.

For $s, w \in C^n$ and $\alpha \in C$ where $s = (s_1, \dots, s_n)$, $w = (w_1, \dots, w_n)$
we define

- i) $s=w$ iff $s_i=w_i$, $i=1, \dots, n$
- ii) $s+w = (s_1+w_1, \dots, s_n+w_n)$,
- iii) $\alpha s = (\alpha s_1, \dots, \alpha s_n)$
- iv) $s.w = s_1w_1 + \dots + s_nw_n$
- v) $|s| = \left\{ |s_1|^2 + \dots + |s_n|^2 \right\}^{1/2}$

For $a \in R$, $s \in C^n$,

vi) $s+a = (s_1+a, \dots, s_n+a)$

Also for $x, y \in \mathbb{R}^n$, we say that

vii) $x \leq y$ iff $x_i \leq y_i, i = 1, \dots, n$

viii) $x < y$ iff $x \leq y$ but $x \neq y$

ix) $x \ll y$ iff $x_i < y_i, i = 1, \dots, n$.

The positive hyperoctant \mathbb{R}^n_+ in \mathbb{R}^n will be

$$\mathbb{R}^n_+ = \{x : x \in \mathbb{R}^n, x_i \geq 0, i = 1, \dots, n\}. \text{ For } t \in \mathbb{R}^n_+$$

we set $\|t\| = t_1 + \dots + t_n$ and for $m \in \mathbb{I}^n$, $m! = m_1! \dots m_n!$

Also for $s \in \mathbb{C}^n$, $t \in \mathbb{R}^n_+$ we shall denote $\frac{t_1 \dots t_n}{s_1 \dots s_n}$ by

st, ($s_i^0 = 1$ even if $s_i = 0$). For $k \in \mathbb{R}$, \bar{k} will denote the real n -tuple (k, \dots, k) . For an

entire function f with domain \mathbb{C}^n , f^k will denote the function $\frac{\partial^{\|\bar{k}\|}}{\partial s_1 \dots \partial s_n} f$ where $k \in \mathbb{I}^n$ and

$$f^0 = f.$$

An unorthodox notation: In the definition of a multiple Dirichlet series we take

sequences $\left\{ \lambda_{jm_j} \right\}_{m_j=1}^{\infty}$, $j = 1, \dots, n$ of exponents.

We shall often require the n -tuple $(\lambda_{1m_1}, \dots, \lambda_{nm_n})$ of those sequences. For brevity we

denote this n -tuple by (λ_{nm_n}) . Also, for a particular set of values of m_1, \dots, m_n , say

$p = (p_1, \dots, p_n)$, the n -tuple $(\lambda_{1p_1}, \dots, \lambda_{np_n})$ will be denoted by (λ_{np}) . Thus,

s. (λ_{nm_n}) will mean $s_1 \lambda_{1m_1} + \dots + s_n \lambda_{nm_n}$.

2. We consider an entire function in \mathbb{C}^n represented by the multiple Dirichlet series

∞

$$f_1(s_1, \dots, s_n) = \sum_{m_1, \dots, m_n=1}^{\infty} a_{m_1, \dots, m_n} \exp(s_1 \lambda_{1m_1} + \dots + s_n \lambda_{nm_n})$$

i. e.

$$(2.1.) \quad f_1(s) = \sum_{m=1}^{\infty} a_m \exp\{s. (\lambda_{nm_n})\}, \text{ where}$$

$$s_j = \sigma_j + i\tau_j \in C \quad (j = 1, \dots, n), \quad a_m \in C \text{ and } \left\{ \lambda_j m_j \right\}_{m_j=1}^{\infty}$$

are n sequences of exponents satisfying the conditions

(2.2) $0 < \lambda_{j1} < \lambda_{j2} < \dots < \lambda_{jk} \rightarrow \infty$ as $k \rightarrow \infty$, for $j = 1, \dots, n$. Throughout we tacitly assume that

$$(2.3) \quad \lim_{m_j \rightarrow \infty} \frac{\log m_j}{\lambda_{jm_j}} = 0, \quad j = 1, \dots, n.$$

A. I. Janusauskas [2] had shown that if (2.3) holds then the domain of convergence of the series (2.1) coincides with its domain of absolute convergence.

Let F be the family of all entire functions represented by a series of the form

$$(2.1) \quad \text{having the same sequences of exponents } \left\{ \lambda_{jm_j} \right\}_{m_j=1}^{\infty}, \quad (j = 1, \dots, n)$$

and satisfying the condition (2.2).

For $f_1, f_2 \in F$, we define $f = f_1 * f_2$ by

$$(2.4) \quad f(s) = f_1(s) * f_2(s) = \sum_{m=1}^{\infty} a_m b_m \exp \left\{ s \cdot \left(\lambda_{nm} \right) \right\} \text{ where}$$

$$(2.5) \quad f_1(s) = \sum_{m=1}^{\infty} a_m \exp \left\{ s \cdot \left(\lambda_{nm} \right) \right\} \text{ and}$$

$$(2.6) \quad f_2(s) = \sum_{m=1}^{\infty} b_m \exp \left\{ s \cdot \left(\lambda_{nm} \right) \right\}.$$

Throughout this paper f will denote the product function $f_1 * f_2$ as given in (2.4).

Theorem 1. The function f , as defined by (2.4), belongs to F .

Proof: Since (2.5) is entire, the series $\sum_{m=1}^{\infty} |a_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \right) \right\}$ is convergent

for all $\sigma \in R^n$. In particular, it is convergent at $\sigma = \bar{\sigma}$, so that $\sum_{m=1}^{\infty} |a_m|$ is

convergent. Thus, $\lim_{\|m\| \rightarrow \infty} |a_m| = 0$ and hence the n -sequence $\{|a_m|\}$ is

bounded. Also the series $\sum_{m=1}^{\infty} |b_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \right) \right\}$ is convergent for all $\sigma \in R^n$

and consequently $\sum_{m=1}^{\infty} |a_m| + |b_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\}$ is convergent for all $\sigma \in \mathbb{R}^n$

which implies $\sum_{m=1}^{\infty} a_m b_m \exp \left\{ s \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\}$ is absolutely convergent for all $s \in \mathbb{C}^n$.

Hence (2.4) represents an entire function and $f \in F$.

3. Corresponding to any $f_1 \in F$ we define the functions: the maximum modulus $M(\sigma, f_1)$, the maximum term $\mu(\sigma, f_1)$ and the indices $\nu_j(\sigma, f_1)$ of the maximum term $\mu(\sigma, f_1)$, ($j = 1, \dots, n$) on \mathbb{R}^n by $M(\sigma, f_1) = \max_{\operatorname{Re} s = \sigma} |f(s)|$,

$$\mu(\sigma, f_1) = \max_{m \in \mathbb{I}^n} [|a_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\}]$$

$$\nu_j(\sigma, f_1) = \max [m_j : |a_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\} = \mu(\sigma, f_1)], j = 1, \dots, n.$$

We call $\nu = \nu(\sigma, f_1) = (\nu_1, \dots, \nu_n)$ as the rank of the maximum term $\mu(\sigma, f_1)$. It is shown in theorem I that the series (2.4) belongs to F . Consequently, for $k \in \mathbb{I}^n$,

$$f^k(s) = (f_1(s) * f_2(s))^k = \sum_{m=1}^{\infty} (\lambda_{nm} \frac{m}{n})^k a_m b_m \exp \left\{ s \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\} \text{ and } f^k(s) = f_1(s) * f_2(s)^k$$

$$= \sum_{m=1}^{\infty} (\lambda_{nm} \frac{m}{n})^{2k} a_m b_m \exp \left\{ s \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\} \text{ are also elements of } F.$$

Let $M(\sigma, k)$, $M^*(\sigma, k)$ be the maximum modulii of f^k and f^k respectively and their

respective maximum terms be denoted by $\mu(\sigma, k)$ and $\mu^*(\sigma, k)$. Then,

$$\mu(\sigma, k) = \max_{m \in \mathbb{I}^n} [(\lambda_{nm} \frac{m}{n})^k |a_m b_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\}],$$

$$\mu^*(\sigma, k) = \max_{m \in \mathbb{I}^n} [(\lambda_{nm} \frac{m}{n})^{2k} |a_m b_m| \exp \left\{ \sigma \cdot \left(\lambda_{nm} \frac{m}{n} \right) \right\}].$$

Also let $\nu_j = \nu_j(\sigma, k)$, and $\nu_j^* = \nu_j^*(\sigma, k)$, $j = 1, \dots, n$, be the indices of $\mu(\sigma, k)$ and $\mu^*(\sigma, k)$ respectively and $\nu = \nu(\sigma, k) = (\nu_1, \dots, \nu_n)$, $\nu^* = \nu^*(\sigma, k) = (\nu_1^*, \dots, \nu_n^*)$ be their respective ranks.

Theorem 2. For $0 \leq \sigma \ll \zeta$ and $k \in \mathbb{I}^n$,

$$M(\sigma, k) \leq \frac{k! M^*(\zeta, \bar{\sigma})}{(\zeta - \sigma)^k}$$

Proof: By Cauchy's integral formula

$$\frac{\partial^{|k|} f(s)}{\partial s_1 \cdots \partial s_n} = \frac{k!}{(2\pi i)^n} \int_0^{\infty} \frac{f(w)}{(w-s)^{k+1}} dw_1 \cdots dw_n,$$

where $C = C_1 \times \cdots \times C_n$, $C_i : |w_i - s_i| = \xi_i - \sigma_i$, $i = 1, \dots, n$.

$$\text{Hence, } \left| \frac{\partial^{|k|} f(s)}{\partial s_1 \cdots \partial s_n} \right| \leq \frac{k! M(\zeta, \bar{O})}{(\zeta - \sigma)^k}$$

Since $M(\sigma, \bar{O}) = M^*(\sigma, \bar{O})$ for all $\sigma \in \mathbb{R}^n$, the theorem follows.

Theorem 3. For any $\sigma \in \mathbb{R}^n$ and $k \in \mathbb{N}^n$,

$$(\lambda_{np})^k \leq \frac{\mu^*(\sigma, k)}{\mu(\sigma, k)} \leq (\lambda_{np*})^k,$$

where $p = (p_1, \dots, p_n)$ is a position of occurrence of $\mu(\sigma, k)$ and $v^*(\sigma, k)$ is the rank of $\mu^*(\sigma, k)$.

Proof: Let $\mu(\sigma, k)$ occur at a position $p = (p_1, \dots, p_n)$ and $\mu^*(\sigma, k)$ occurs at $p^* = (p_1^*, \dots, p_n^*)$. Then,

$$\mu(\sigma, k) = (\lambda_{np})^k |a_p b_p| \exp \left\{ \sigma \cdot (\lambda_{np}) \right\}$$

$$\geq (\lambda_{np*})^k |a_{p*} b_{p*}| \exp \left\{ \sigma \cdot (\lambda_{np*}) \right\} = \frac{\mu^*(\sigma, k)}{(\lambda_{np*})^k}$$

Hence, $\frac{\mu^*(\sigma, k)}{\mu(\sigma, k)} \leq (\lambda_{np*})^k$. Evidently $p^* \leq v^*$. Due to (2.2) we have,

$$(3.1) \quad \frac{\mu^*(\sigma, k)}{\mu(\sigma, k)} \leq (\lambda_{np*})^{k*}$$

$$\text{Again, } \mu^*(\sigma, k) = (\lambda_{np*})^{2k} |a_{p*} b_{p*}| \exp \left\{ \sigma \cdot (\lambda_{np*}) \right\}$$

$$\geq (\lambda_{np})^{2k} |a_p b_p| \exp \left\{ \sigma \cdot (\lambda_{np}) \right\} = (\lambda_{np})^k \mu(\sigma, k). \text{ Hence,}$$

$$(3.2) \quad (\lambda_{np})^k \leq \frac{\mu^*(\sigma, k)}{\mu(\sigma, k)}$$

Combining (3.1) and (3.2) the theorem follows.

Theorem 4: For any $k \gg 0$ and $\sigma \in R^n$,

$$\lambda_{1q_1} \dots \lambda_{nq_n} \leq \frac{\mu(\sigma, k)}{\mu(\sigma, k-1)} \leq \lambda_1 \nu_1 \dots \lambda_n \nu_n,$$

where $q = (q_1, \dots, q_n)$ is a position of occurrence of $\mu(\sigma, k-1)$ and (ν_1, \dots, ν_n) is the rank of $\mu(\sigma, k)$,

Proof: Let $\mu(\sigma, k)$ occur at $p = (p_1, \dots, p_n)$. Then,

$$\begin{aligned} \mu(\sigma, k-1) &= (\lambda_{nq})^{k-1} | a_q b_q | \exp \left\{ \sigma \cdot (\lambda_{nq}) \right\} \\ &\geq (\lambda_{np})^{k-1} | a_p b_p | \exp \left\{ \sigma \cdot (\lambda_{np}) \right\} = \frac{\mu(\sigma, k)}{\lambda_{1p_1} \dots \lambda_{np_n}}, \quad \text{Hence,} \end{aligned}$$

$$(3.3) \quad \frac{\mu(\sigma, k)}{\mu(\sigma, k-1)} \leq \lambda_{1p_1} \dots \lambda_{np_n} \leq \lambda_1 \nu_1 \dots \lambda_n \nu_n.$$

$$\begin{aligned} \text{Again } \mu(\sigma, k) &\geq (\lambda_{nq})^k | a_q b_q | \exp \left\{ \sigma \cdot (\lambda_{nq}) \right\} \\ &= \lambda_{1q_1} \dots \lambda_{nq_n} \mu(\sigma, k-1). \quad \text{Hence,} \end{aligned}$$

$$(3.4) \quad \lambda_{1q_1} \dots \lambda_{nq_n} \leq \frac{\mu(\sigma, k)}{\mu(\sigma, k-1)}; \text{ combining (3.3) and (3.4) the theorem follows.}$$

Theorem 5. For any $k \gg 0$ and $\sigma \in R^n$,

$$\lambda_{1q_1}^* \dots \lambda_{nq_n}^* \leq \left\{ \frac{\mu^*(\sigma, k)}{\mu^*(\sigma, k-1)} \right\}^{\frac{1}{2}} \leq \lambda_1 \nu_1^* \dots \lambda_n \nu_n^*,$$

where $q^* = (q_1^*, \dots, q_n^*)$ is a position of occurrence of $\mu^*(\sigma, k-1)$ and $\nu^* = (\nu_1^*, \dots, \nu_n^*)$ is the rank of $\mu^*(\sigma, k)$.

Proof: The proof is exactly similar to that of theorem 4.

4. For any $f_1 \in F$, let D be the set of all discontinuities of ν in R^n , where $\nu = (\nu_1, \dots, \nu_n)$ is the rank of the maximum term $\mu(\sigma, f_1)$. Also let S denote the set of all $\sigma \in R^n$ at which $\mu(\sigma, f_1)$ is attained by more than one term of the series

$$(4.1) \quad \sum_{m=1}^{\infty} |a_m| \exp \left\{ \sigma \cdot (\lambda_{nm}) \right\}.$$

R. K. Das [1] had shown that D and S are identical. (A similar result for entire functions represented by multiple power series was proved by J. G. Krishna [3]).

Hence for $\sigma \in R^n - D$, $\mu(\sigma, f_1)$ is attained by only one term of the series (4.1) and the position of that term is $\nu = (\nu_1, \dots, \nu_n)$.

Hence in such a case, the theorems 3, 4 and 5 will take the following forms in theorems 6, 7 and 8 respectively.

Theorem 6. For any $\sigma \in \mathbb{R}^n - D$ and $k \in \mathbb{I}^n$,

$$(4.2) \quad (\lambda_n \nu) \leq \frac{\mu^*(\sigma, k)}{\mu(\sigma, k)} \leq (\lambda_n \nu^*)$$

where ν and ν^* are the ranks of μ and μ^* respectively and D is the set of all discontinuities of $\nu(\sigma, k)$ in \mathbb{R}^n .

Theorem 7. For any $\sigma \in \mathbb{R}^n - D_1$ and $k \gg \bar{0}$,

$$(4.3) \quad \lambda_1 \nu_1(\sigma, k-1) \dots \lambda_n \nu_n(\sigma, k-1) \leq \frac{\mu(\sigma, k)}{\mu(\sigma, k-1)} \leq \lambda_1 \nu_1(\sigma, k) \dots \lambda_n \nu_n(\sigma, k),$$

where D_1 is the set of all discontinuities of $\nu(\sigma, k-1)$.

Corollaries : For any $\sigma \in \mathbb{R}^n - D_1$,

$$\text{i) } \lambda_1 \nu_1(\sigma, \bar{0}) \dots \lambda_n \nu_n(\sigma, \bar{0}) \leq \lambda_1 \nu_1(\sigma, \bar{1}) \dots \lambda_n \nu_n(\sigma, \bar{1}) \dots \leq \dots$$

$$\text{ii) } \frac{\mu(\sigma, \bar{1})}{\mu(\sigma, \bar{0})} \leq \frac{\mu(\sigma, \bar{2})}{\mu(\sigma, \bar{1})} \leq \dots$$

iii) Putting $k = \bar{1}, \bar{2}, \dots, \bar{p}$ successively in (4.3) and multiplying the resulting p inequalities and using (i) we have,

$$\lambda_1 \nu_1(\sigma, \bar{0}) \dots \lambda_n \nu_n(\sigma, \bar{0}) \leq \left\{ \frac{\mu(\sigma, \bar{p})}{\mu(\sigma, \bar{0})} \right\}^{\frac{1}{p}} \leq \lambda_1 \nu_1(\sigma, \bar{p}) \dots \lambda_n \nu_n(\sigma, \bar{p}).$$

Theorem 8. For any $\sigma \in \mathbb{R}^n - D_1^*$ and $k \gg \bar{0}$

$$(4.4) \quad \lambda_1 \nu_1^*(\sigma, k-1) \dots \lambda_n \nu_n^*(\sigma, k-1) \leq \left\{ \frac{\mu^*(\sigma, k)}{\mu^*(\sigma, k-1)} \right\}^{1/2} \leq \lambda_1 \nu_1^*(\sigma, k) \dots \lambda_n \nu_n^*(\sigma, k)$$

where D_1^* is the set of all discontinuities of $\nu^*(\sigma, k-1)$.

Corollaries : For any $\sigma \in \mathbb{R}^n - D_1^*$

$$\text{i) } \lambda_1 \nu_1^*(\sigma, \bar{0}) \dots \lambda_n \nu_n^*(\sigma, \bar{0}) \leq \lambda_1 \nu_1^*(\sigma, \bar{1}) \dots \lambda_n \nu_n^*(\sigma, \bar{1}) \leq \dots$$

$$\text{ii) } \frac{\mu^*(\sigma, \bar{1})}{\mu^*(\sigma, \bar{0})} \leq \frac{\mu^*(\sigma, \bar{2})}{\mu^*(\sigma, \bar{1})} \leq \dots$$

$$\text{iii) } \lambda_1 v_1^*(\sigma, \bar{O}) \cdots \lambda_n v_n^*(\sigma, \bar{O}) \leq \left\{ \frac{\mu^*(\sigma, \bar{p})}{\mu^*(\sigma, \bar{O})} \right\}^{\frac{1}{2p}} \leq \lambda_1 v_1^*(\sigma, \bar{p}) \cdots$$

$$\lambda_n v_n^*(\sigma, \bar{p})$$

Theorem 9. For any $\sigma \in R^n - D \cup D_1$ and $k \in I$ ($k > 0$),

$$\lambda_1 v_1(\sigma, \bar{k}-1) \cdots \lambda_n v_n(\sigma, \bar{k}-1) \leq \left\{ \frac{\mu^*(\sigma, \bar{k})}{\mu(\sigma, \bar{k}-1)} \right\}^{\frac{1}{k-1}} \leq \lambda_1 v_1(\sigma, k)$$

$$\cdots \lambda_n v_n^*(\sigma, \bar{k}),$$

where D is the set of all discontinuities of $v(\sigma, \bar{k})$ and D_1 is the set of all discontinuities of $v(\sigma, \bar{k}-1)$.

Proof : From (4.2), using (4.3), we have

$$\mu^*(\sigma, \bar{k}) \leq \mu(\sigma, \bar{k}) (\lambda_n v_n^*(\sigma, \bar{k}))^{\bar{k}}$$

$$\leq \mu(\sigma, \bar{k}-1) \lambda_1 v_1(\sigma, \bar{k}) \cdots \lambda_n v_n^*(\sigma, \bar{k}) (\lambda_n v_n^*(\sigma, \bar{k}))$$

Hence,

$$(4.5) \quad \frac{\mu^*(\sigma, \bar{k})}{\mu(\sigma, \bar{k}-1)} \leq \lambda_1 v_1(\sigma, \bar{k}) \cdots \lambda_n v_n(\sigma, \bar{k}) (\lambda_n v_n^*(\sigma, \bar{k}))^{\bar{k}}$$

Again, from (4.2), $\mu^*(\sigma, \bar{k}) \geq \mu(\sigma, \bar{k}) (\lambda_n v_n(\sigma, \bar{k}))^{\bar{k}} \geq \mu(\sigma, \bar{k}-1) \lambda_1 v_1(\sigma, \bar{k}-1) \cdots \lambda_n v_n(\sigma, \bar{k}-1) (\lambda_n v_n(\sigma, \bar{k}))^{\bar{k}}$

Hence,

$$(4.6) \quad \frac{\mu^*(\sigma, \bar{k})}{\mu(\sigma, \bar{k}-1)} \geq \lambda_1 v_1(\sigma, \bar{k}-1) \cdots \lambda_n v_n(\sigma, \bar{k}-1) (\lambda_n v_n(\sigma, \bar{k}))^{\bar{k}}$$

From (4.5) and (4.6), using (4.2) and the Corollary (i) of theorem 7, the result follows. The second author wishes to express his gratitude to the "Govt. of India" for awarding him a scholarship.

REFERENCES

1. Das R. K. : Study on the growth and the space of entire functions of several complex variables represented by multiple Dirichlet series - Ph. D. thesis, Calcutta University (1985).
2. Janusanskas A. I. : Elementary theorems on the convergence of double Dirichlet series-Soviet Math. Dokl Vol. 18 (1977) No. 3. pp. 610-614.
3. Krishna J. G. : Maximum term of a power series in one and several complex variables - Pacific Jour. Math. Vol 29 No. 3 (1969) pp 609 - 622.